Investigation of Effect of Extensively Used Polymers on Thermoreversible Properties of Pluronic ® Tri-Block Polymer

Nilesh Ramesh Rarokar(1*), Suprit D Saoji1(2), Pramod Khedekar(3)

(1) Department of Pharmaceutical Sciences Rashtrasant Tukadoji Maharaj Nagpur University Nagpur (M.S.), India 440033
(2) Department of Pharmaceutical Sciences Rashtrasant Tukadoji Maharaj Nagpur University Nagpur (M.S.), India 440033
(3) Department of Pharmaceutical Sciences Rashtrasant Tukadoji Maharaj Nagpur University Nagpur (M.S.), India 440033
(*) Corresponding Author


This investigation presents a study on the effect of various polymers on gelling properties of tri-block (Pluronic®) copolymers and increasing the stability parameter of in situ gelling system by altering their composition. The tri-block copolymers finds their importance in fabrication of in situ gelling system for the delivery of various kinds of drugs, which can be administered by topical, ophthalmic or parenteral routes. Pluronic®, is a category of non-toxic, water soluble, biodegradable poly (ethylene oxide)/poly (propylene oxide)/poly ethylene oxide), tri-block copolymers which have application in formulation of various in situ gelling systems. This formulation undergo thermo-reversible gelation, where it exists as a free flowing liquid at low temperature and gels in the range of body temperature to form stable depot in aqueous environment. Gelling system was prepared according to the 'Cold Method' using different concentration of polymers (15% to 20% w/v) and subjected to the determination of gelation temperature (GT), viscosity study and effect of various polymers on the strength of gelation. Overall study on the gelation of system at particular temperature is the important parameter for formulation of in situ drug delivery system. It was established that addition of 0.5% w/v of HPMC K4M into gelling system make it stable for forming gel in the range of body temperature whereas methyl cellulose, carbopol 934P, and HPMC E-5 restrict the gel formation.


Key words: Tri-Block Copolymer; Gelation Temperature; Gelling System; Depot.

Full Text:



An Y, Hubbell J A. Intraarterial protein delivery via intimallyadherent bilayer hydrogels. J Control Release 2000;64:205-215.

Asasutjarit R, Thanasanchokpibull S, Fuongfuchat A, Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic In-situ gels. Intl J Pharm 2011;411(1–2): 128-135.

Bochot A, Fattal E, Gulik A, Couarraze G, Couareur P. Liposomes dispersed within athermosensitive gel: a new dosage form for ocular delivery of oligonucleotides. Pharm Res 1998;15(9):1364-1369.

Burkoth A K, Anseth K S. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 2000;21:2395-2404.

Cao Y, Zhao N, Wu K, and Zhu X. Solution Properties of a Thermosensitive Triblock Copolymer of N-Alkyl Substituted Acrylamides. Langmuir 2009;25:1699-1704.

Cohen S, Lobel E, Trevgoda A, Peled Y. A novel in situ forming phthalmic drug delivery system from alginates undergoing gelation in the eye. J Control Release 1997;44:201-208.

Dunn R L, English J P, Cowsar D R, Vanderbilt D P. Biodegradable in-situ forming implants and methods of producing the same. US Patent 1990;4: 938 763.

Dumortier G, J L Grossiord, F Agnely, and J C Chaumeil, “Areview of poloxamer 407 pharmaceutical and pharmacological characteristics,”. Pharm Res 2006;23(12):2709-2728.

Eliaz R E, Kost J. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J Biomed Mater Res 2000;50:388-396.

Eliaz R E, Szoka F C. Robust and prolonged gene expression from injectable polymeric implants. Gene Ther 2002;9:1230-1237.

Eve Ruel-Garie´py, Jean-Christophe Leroux, In situ-forming hydrogels—review of temperature-sensitive systems. Eu J of Pharma and Biopharm 2004;58:409–426.

Gaikwad V et al. Formulation and evaluation of In-Situ gel of metoprolol tartrate for nasal delivery. J Pharm Res 2010;3:788-793.

Gang Wei, Hui Xu, Ping Tian Ding, San Ming Li, Jun Min Zheng, Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release 2002;83:65–74.

Gilbert J C, Richardson J C, Davies M C, Palin K J, and Hadgraft J, “The effect of solutes and polymers on the gelation properties of pluronic F127 solutions for controlled drug delivery,” J Control Release 1987;5:113-118.

Haglund B O, Joshi R, Himmelstein K J. An in situ gelling system for parenteral delivery. J Control Release 1996;41:229-235.

Haglund B O, Joshi R, Himmelstein K J. An in situ gelling system for parenteral delivery. J Control Release 1996;41:229-235.

Hoffman A. S., 2012. Hydrogels for biomedical applications. Advanced drug delivery reviews. 64, 18-23.

Hottori H., Uenoyama M., Kurita A., 2002. Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23, 833-840.

Ishihara M., Nakanishi K., Ono K., Sato M., Kikuchi M., Saito Y., Yura H., Matsui T., Joshi A., Ding S., Himmelstrin. 1993. Reversible gelation compositions and methods of use. US Patent 5 252 318.

Kumar S., Haglund B. O., Himmelstein K. J., 1994. In situ forming gels for ophthalmic drug delivery. J. Ocul. Pharmacol. 10, 47-56.

Ishihara M., Obara K., Ishizuka T., Fujita M., Sato M., Nakanishi K., Ono K., Sato M., Kikuchi M., Saito Y., Yura H., Matsui T., Hottori H., Uenoyama M., Kurita A., 2002. Controlled release of fibroblast growth factors and heparin from photo-cross-linked chitosan hydrogels and subsequent effect on in vivo vascularization. J. Biomed. Mater. Res. 64A, 551-559.

Kobayashi, K.; Huang, C.; Lodge, T.P. Thermoreversible gelation of aqueous methylcellulos solutions. Macromolecules 1999; 32, 7070–7077.

Lee J, Joo MK, Oh H, Sohn YS, Jeong B. Injectable gel: poly(-ethylene glycol)- sebacic acid polyes ter. Polymer. 2006; 47(11):3760–6.

Mandal S, Thimmasetty MK, Prabhushankar G, Geetha M. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. International Journal of Pharmaceutical Investigation. 2012;2(2):78-82.

Niu G., H. Zhang, L. Song, X. Cui, H. Cao, Y. Zheng, S. Zhu, Z. Yang, H. Yang, Thiol/acrylate-modified PEO-PPO-PEO triblocks used as reactive and thermosensitive copolymers, Biomacromolecules 9 (2008) 2621-2628.

Ono K., Saito Y., Yura H., Ishizukawa K., Kurita A., Akaike T., Ishihara M., 2000. Photocrosslinkable chitosan as a biological adhesive. J. Biomed. Mater. Res. 49, 289-295. Packhaeuser C.B., Schnieders J., Oster C.G., Kissel T., 2004. In situ forming parenteral drug delivery systems: an overview. European Journal of Pharmaceutics and Biopharmaceutics 58, 445–455.

Qiu Y., Park K., 2012. Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews. 64, 49-60.

Qu T., Wang A., Yuan J., Shi J., Gao Q., 2009. Preparation and characterization of thermo-responsive amphiphilic triblock copolymer and its self-assembled micelle for controlled drug release. Colloids and Surfaces B: Biointerfaces 72, 94–100.

Rarokar N R, Saoji SD, Raut NA, Taksande JB, Khedekar PB, and Dave VS, Nanostructured Cubosomes in a Thermoresponsive Depot System: An Alternative Approach for the Controlled Delivery of Docetaxel. AAPS PharmSciTech, Vol. 2015; 17(2):436-445.

Rowe R., P. Sheskey, and S. Owen, Pharmaceutical Handbook of pharmaceutical excipients, 5th edn., Pharmaceutical, London UK and American pharmaceutical association, Washington, USA, (2005).

Rozier A., Mazuel C., Grove J., Plazonnet B., 1989. Gelrite: A novel, ionactivated, in-situ gelling polymer for ophthalmic vehicles.Effect on bioavailability of timolol. Int. J. Pharm. 57, 163-168.

Shively M. L., Coonts B. A., Renner W. D., Southard J. L., Bennett A. T., 1995. Physicochemical characterization of polymeric injectable implant delivery system. J. C. Rel. 33, 237-243.

Srividya B., Cardoza R. M., Amin P. D., 2001. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Control. Rel. 73, 205-211.

Schmolka I. R., 1972. “Artificial Skin I. Preparation and properties of Pluronic F-127 Gels for Treatment of Burns,” J. Biomed. Mater. Res., 6, 571-582.

Young C. S., Choi J. S., Quan Q. Z., Rhee J. D., Kim C. K., Lim .S. J., Kim K. M., Oh P. S., Choi H. G., 2001. Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium. Int. J. Pharm. 226 (1-2) 195-205.


Article Metrics

Abstract views : 618 | views : 437


  • There are currently no refbacks.