Status mineral dan hormon tiroid pada penderita hipotiroidisme

https://doi.org/10.22146/jcoemph.39334

Pramudji Hastuti(1*), Untung Supriadi Widodo(2), Rony Oktarizal(3), Andika Laksamana Kurniadi(4), Khoirul Anwar(5), Auladi Ahmad Ridho Siregar(6)

(1) Departemen Biokimia Fakultas Kedokteran, Pengabdian Masyarakat, dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia
(2) Balai Pengobatan Gangguan Akibat Kekurangan Iodium (GAKI), Magelang, Indonesia
(3) Mahasiswa Program Studi Pendidikan Dokter, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia
(4) Mahasiswa Program Studi Pendidikan Dokter, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia
(5) Mahasiswa Program Studi Pendidikan Dokter, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia
(6) Mahasiswa Program Studi Pendidikan Dokter, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


ABSTRAK Rendahnya kadar hormon tiroid dalam sirkulasi mengakibatkan hipotiroidisme klinis dan menyebabkan berbagai proses metabolik turun. Untuk mempertahankan  sintesis hormon tiroid dan pelepasannya memerlukan suplai beberapa mineral yang adekuat. Penelitian ini, menentukan kadar mineral Zn, Cu, Fe dan Se dalam serum anak yang menderita hipotiroidisme dibandingkan kontrol. Penelitian ini melibatkan sebanyak 23 anak yang terdiri dari 11 subjek yang mengalami hipotiroidisme dan 12 pasien normotiroid sebagai kontrol. Kadar Zn, Cu, Fe dan Se serum ditentukan dengan spektrofotometer absorpsi atom. Uji statistik yang digunakan adalah uji t (nilai p < 0,05 dianggap bermakna), kemudian odds ratio ditentukan untuk mengetahui hubungan antarvariabel. Kadar mineral yang diperiksa tidak berbeda bermakna (p > 0,05) antara penderita hipotiroidisme dengan kontrol. Rendahnya kadar Zn dan Se merupakan faktor risiko tingginya kadar thyroid stimulating hormone (TSH) sebagai penanda terjadinya hipotiroidisme. Dapat disimpulkan bahwa rendahnya kadar beberapa mineral terutama Zn dan Se merupakan faktor risiko terjadinya hipotiroidisme. Karena kadar TSH dalam serum tidak hanya dipengaruhi oleh kadar mineral dalam tubuh, perlu dilakukan studi lebih lanjut dalam skala yang lebih besar dengan pengukuran faktor perancu lain.

KATA KUNCI status mineral; hormon tiroid; hipotiroidisme

 

ABSTRACT Low level of circulating thyroid hormone results in clinical hypothyroidism and causes many metabolic processes to slow down. To maintain thyroid hormone synthesis and release, an adequate supply of trace elements is required. In this study, serum content of the trace elements, namely Zn, Cu, Fe, and Se in hypothyroidism patients was determined and compared to that in control subjects. Twenty three subjects consist of 11 hypothyroid patients and 12 normotiroid children as controls participated in this study. Serum Zn, Cu, Fe and Se level were determined using atomic absorption spectrophotometer. T test was used for analysis and p value < 0.05 considered significant. Odds ratio was determined to study the relationship between variables. Serum mineral level in hypothyroid patients were not significantly different
(p > 0.05) from the level in control subjects. Low level of Zn and Se were risk factor for high level of TSH as marker of hypothyroidism. It can be concluded that the low level of trace elements especially Zn and Se were risk factor of the hypothyroidism. Because TSH serum level is not only influenced by the level of trace elements, further study is needed to analyze other influencing factors in larger population.

KEYWORDS mineral status; thyroid hormone; hypothyroidism


Full Text:

PDF


References

  1. Allen PJ, Fomenko SD. Congenital hypothyroidism. Pediatr Nurs. 2011;37(6):324-326.
  2. Laurberg P, Cerqueira C, Ovesen L, Rasmussen LB, Perrild H, Andersen S, et al. Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab. 2010;24:13–27.
  3. Shanholtz HJ. Congenital hypothyroidism. J Pediatr Nurs. 2013;28(2):200-2.
  4. Chung HR. Iodine and thyroid function. Ann Pediatr Endocrinol Metab. 2014;19(1):8.
  5. Postellon DC, Kemp S. Congenital hypothyroidism [Internet]. Pediatrics: General Medicine; 2010. [cited 2018 October 20]. Available from: http://emedicine.medscape.com/article/919758-overview
  6. de Escobar GM, Obregon MJ, del Rey FE. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr. 2007;10(12A):1554–1570.
  7. Dhaar GM, Robbani I. Foundations of community medicine. India: Reed Elsevier; 2008. Chapter: Nutritional problems of mothers and children. p.272–280.
  8. Hwang S, Lee EY, Lee WK, Shin DY, Lee EJ. Correlation between iodine intake and thyroid function in subjects with normal thyroid function. Biol Trace Elem Res. 2011;143:1393–1397.
  9. Najafi M, Khodaee GH, Bahari M, Sabahi M, Farsi MM, Kiani F. Neonatal thyroid screening in a mild iodine deficiency endemic area in Iran. Indian J Med Sci. 2008;62:113–116.
  10. Khattak RM, Khattak MN, Ittermann T, Völzke H. Factors affecting sustainable iodine deficiency elimination in Pakistan: A global perspective. J Epidemiol. 2017;27(6):249-57.
  11. Rasic-Milutinovic Z, Jovanovic D, Bogdanovic G, Trifunovic J, Mutic J. Potential influence of selenium, copper, zinc and cadmium on l-thyroxine substitution in patients with Hashimoto thyroiditis and hypothyroidism. Exp Clin Endocrinol Diabetes. 2017;125(02):79-85.
  12. Goldstein M. The nature of animal healing: The definitive holistic medicine guide to caring for your dog and cat. New York: Ballantine Books; 2009.
  13. Zimmermann MB, Köhrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12(10):867-78.
  14. Ravanbod M, Asadipooya K, Kalantarhormozi M, Nabipour I, Omrani G. Treatment of Iron-deficiency Anemia in Patients with Subclinical Hypothyroidism. Am J Med. 2013;126(5):420-424.
  15. Sastroasmoro S, Ismael S. Dasar-dasar metodologi penelitian klinis. Yogyakarta: Sagung Seto; 2011.
  16. Andersen S, Karmisholt J, Pedersen KM, Laurberg P. Reliability of studies of iodine intake and recommendations for number of samples in groups and in individuals. Br J Nutr. 2008;99(4):813-8.
  17. Wang F, Tan Y, Wang C, Zhang X, Zhao Y, Song X, et al. Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J Clin Endocrinol Metab. 2012;97(8):2724-31.
  18. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. American thyroid association taskforce on hypothyroidism in adults. clinical practice guidelines for hypothyroidism in adults: cosponsored by the american association of clinical endocrinologists and the american thyroid association. Endocr Pract. 2012;18(6):988-1028.
  19. Biondi B. The normal TSH reference range: what has changed in the last decade?. J Clin Endocrinol Metab. 2013;98:3584–87.
  20. Kandhro GA, Kazi TG, Afridi HI, Kazi N, Baig JA, Arain MB, et al. Effect of zinc supplementation on the zinc level in serum and urine and their relation to thyroid hormone profile in male and female goitrous patients. Clin Nutr. 2009;28(2):162-8.
  21. Al-Juboori IA, Al-Rawi R, A-Hakeim HK. Estimation of serum copper, manganese, selenium, and zinc in hypothyroidism patients. IUFS J Biol. 2009;68(2):121-6.
  22. Betsy A, Binitha MP, Sarita S. Zinc deficiency associated with hypothyroidism: An overlooked cause of severe alopecia. Int J Trichology . 2013;5(1):40.
  23. Maxwell C, Volpe SL. Effect of zinc supplementation on thyroid hormone function: A case study of two college females. Ann Nutr Metab. 2007;51(2):188-94.
  24. World Health Organization. Vitamin and mineral requiremensts in human nutrition, 2nd ed. Geneva: World Health Organization; 2005
  25. Zimmermann MB, Aeberli I, Andersson M, Assey V, Yorg JA, Jooste P, et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100–299 μg/L: A UNICEF/ICCIDD study group report. J Clin Endocrinol Metab. 2013;98(3):1271-80.
  26. Khatiwada S, Gelal B, Baral N, Lamsal M. Association between iron status and thyroid function in Nepalese children. Thyroid Res. 2016;9(1):2.
  27. Zimmermann MB. The influence of iron status on iodine utilization and thyroid function. Annu Rev of Nutr. 2006;26:367-89.
  28. Seth A, Aggarwal V, Maheshwari A. Hypothyroidism in children beyond 5 y of age: Delayed diagnosis of congenital hypothyroidism. Indian J Pediatr. 2012;79(7):891-5.



DOI: https://doi.org/10.22146/jcoemph.39334

Article Metrics

Abstract views : 8643 | views : 27989

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Journal of Community Empowerment for Health

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.