Karakterisasi Fungsi dan Peran Domain Enzim Sucrose Phosphate Synthase Tebu Melalui Studi Delesi Mutagenesis
Widhi Dyah Sawitri(1*), Bambang Sugiharto(2)
(1) Fakultas Pertanian, Universitas Gadjah Mada
(2) Jurusan Biologi, FMIPA, Universitas Jember
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Afidah, S.N., I.D. Agustien, P. Dewanti, and B. Sugiharto, 2021. Increased activity of sugarcane sucrose-phosphate synthase in transgenic tomato in response to N-terminal truncation. Indonesian Journal of Biotechnology, 27(1), pp.43-50.
Anur, R.M., N. Mufithah, W.D. Sawitri, H. Sakakibara, and B. Sugiharto. 2020. Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants, 9(200), pp.1-11.
Chua, T.K., J.M. Bujnicki, T.C. Tan, F. Huynh, B.K. Patel, and Sivaraman. 2008. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. The Plant Cell, 20, pp.1059-1072.
Fibriani, S., I.D. Agustien, W.D. Sawitri, dan B. Sugiharto. 2019. Transformasi genetik dan ekspresi mutan sucrose-phosphate synthase pada tanaman tomat. Jurnal Bioteknologi dan Biosains Indonesia, 6(1), pp. 130-138.
Haigler, C.H., B. Singh, D. Zhang, S. Hwang, C. Wu, W.X. Cai, M. Hozain, W. Kang, B. Kiedaisch, R.E. Strauss, E.F. Hequet, B.G. Wyatt, G.M. Jividen, and A.S. Holaday, 2007. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enchanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Mol Biol, 63, pp. 815-832.
Huber, S.C., and J.L. Huber. 1996. Role and regulation of sucrose-phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Bio, 47, pp. 431-44.
Ishimaru, K., N. Hirotsu, T. Kashiwagi, Y. Madoka, K. Nagasuga, K. Ono, and R. Ohsugi. 2008. Overexpression of a maiza SPS gene improves yield characters of potato under field conditions. Plant Prod Sci, 11(1), pp. 104-107.
Kurniah, N.I., W.D. Sawitri, M.S. Rohman, Y. Nugraha, T. Hase, and B. Sugiharto. 2021. Mutation of UDP-glucose binding motif residues lead to increased affinity for ADP-glucose in sugarcane sucrose phosphate synthase. Molecular Biology Reports, 48(2), pp. 1697-1706.
Lemoine, R., S. La Camera, R. Atanassova, F. Dedaldechamp, T. Allario, N. Pourtau, J.L. Bonnemain, M. Laloi, P. Coutos-Thevenot, L. Maurousset, M. Faucher, C. Girousse, P. Lemonnier, J. Parrilla, and M. Durand. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci, 272(4), pp. 1-21.
Li, Y., Y. Yao, G. Yang, J. Tang, G.J. Ayala, X. Li, W. Zhang, Q. Han, T. Yang, H. Wang, K.H. Mayo, and J. Su. 2020. Co-crystal structure of Thermosynechococcus elongatus sucrose phosphate synthase with UDP and sucrose-6-phosphate provides insight into its mechanism of action involving and oxocarbenium ion and the glycosidic bond. Front Microbiol, 1050(11), pp. 1-15.
Maloney, V.J., J.Y. Park, F. Unda, and S.D. Mansfield. 2015. Sucrose-phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany, 66(14), pp. 4383-4394.
Ruan, Y.L., 2012. Signaling role of sucrose metabolism in development. Molecular plant, 5(4), pp. 763-765.
Sawitri, W.D., H. Narita, E. Ishizaka-Ikeda, B. Sugiharto, T. Hase, and A. Nakagawa. 2016. Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. coli and insect Sf9 cells: and importance of the N-terminal domain for an allosteric regulatory property. J. Biochem, 159(6), pp. 599-607.
Sawitri, W.D., S.N. Afidah, A. Nakagawa, T. Hase, and B. Sugiharto. 2018. Identification of UDP-glucose binding site in glycosyltransferase domain of sucrose phosphate synthase from sugarcane (Saccharum officinarum) by structure-based site-directed mutagenesis. Biophysical Reviews, 10, pp. 293-298.
Sugiharto, B., H. Sakakibara, Sumadi, and T. Sugiyama. 1997. Differential expression of two genes for sucrose-phosphate synthase sugarcane: molecular cloning of the cDNAs and comparative analysis of gene expression. Plant Cell Physiol, 38(8), pp. 961-965.
DOI: https://doi.org/10.22146/veg.81130
Article Metrics
Abstract views : 2206 | views : 2797Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Vegetalika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
VEGETALIKA journal indexed by: