Predictive Trends of Major Food Prices in Indonesia: A Deep Learning Approach to Time Series Forecasting
Muhammad Ali Yafi(1*), Mutiara Ria Despita Maharani(2), Nur Afra Nabilla(3), Amanda Sekar Adyanti(4)
(1) Master of Sains Agribusiness, Faculty of Economics and Management, IPB University
(2) Master of Sains Agribusiness, Faculty of Economics and Management, IPB University
(3) Master of Sains Agribusiness, Faculty of Economics and Management, IPB University
(4) Master of Agribusiness, Faculty of Agriculture, University of Jember
(*) Corresponding Author
Abstract
Price uncertainty in food commodities will have an impact on people's food consumption. Prediction of future prices is necessary to serve as a policy reference in overcoming price fluctuations. The purpose of the study is to predict the price of major agricultural food in Indonesia in 2023-2029. The research uses time series data from 1990-2022 with price variables of corn, onion red chilli, beef, and chicken. The analytical tool used to answer the research objectives is the Autoregressive Integrated Moving Average (ARIMA) model. The results of the analysis obtained the best model for predicting price forecasts, namely ARIMA on corn commodities (1,1,0), shallots (2,1,0), red chillies (1,1,0), beef (0,1,1), and chicken meat (1,1,1). The results of the prediction of the price of Indonesia's food needs in 2023-2029 as a whole tend to increase.
Keywords
Full Text:
PDFReferences
Behnassi, M., & El Haiba, M. (2022). Implications of the Russia–Ukraine war for global food security. Nature Human Behaviour, 6(6), 754–755. https://doi.org/10.1038/s41562-022-01391-x
Bezabih, G., Wale, M., Satheesh, N., Workneh Fanta, S., & Atlabachew, M. (2023). Forecasting cereal crops production using time series analysis in Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 22(8), 546–559. https://doi.org/10.1016/j.jssas.2023.07.001
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis: Forecasting and Control (5th ed.). New Jersey: John Wiley and Sons Inc.
Br Bangun, R. H. (2016). Penerapan Autoregressive Integrated Moving Average (Arima) Pada Peramalan Produksi Kedelai Di Sumatera Utara. Jurnal Agrica, 9(2), 90. https://doi.org/10.31289/agrica.v9i2.484
Destiarni, R. P. (2018). Peramalan Harga Telur Ayam Ras Pada Hari Besar Keagamaan di Pasar Jawa Timur. Berkala Ilmiah AGRIDEVINA, 7(1). https://doi.org/10.33005/adv.v7i1.1131
Febrilia, B. R. A., & Agustina, E. (2024). Peramalan Harga Jagung Menggunakan Model Arima. Jurnal Agrilink : Kajian Agribisnis Dan Rumpun Ilmu Sosiologi Pertanian (Edisi Elektronik), 6(1), 14–23. Retrieved from https://jurnal.usi.ac.id/index.php/agrilink/article/view/1096
Firdaus, M. (2020). Aplikasi Ekonometrika dengan E-Views, Stata, dan R. Bogor: IPB Press.
Fitriana, R., Siregar, H., & Anggraeni, L. (2022). The Impact of El Nino and La Nina Towards The Prices of Cabbage and Shallot in Indonesia. Jurnal Manajemen Dan Agribisnis, 19(2), 195–204. https://doi.org/10.17358/jma.19.2.195
Hirata, T., Kuremoto, T., Obayashi, M., Mabu, S., & Kobayashi, K. (2015). Time Series Prediction Using DBN and ARIMA. 2015 International Conference on Computer Application Technologies, (August), 24–29. IEEE. https://doi.org/10.1109/CCATS.2015.15
Huang, Y., Yuan, W., Wang, M., Gu, W., & Zhang, L. (2022). Trend Forecast of Shanghai Crude Oil Futures. Journal of Advanced Computational Intelligence and Intelligent Informatics, 26(6), 1040–1045. https://doi.org/10.20965/jaciii.2022.p1040
Khadka, R., & Chi, Y. N. (2024). Forecasting the Global Price of Corn: Unveiling Insights with SARIMA Modelling Amidst Geopolitical Events and Market Dynamics. American Journal of Applied Statistics and Economics, 3(1), 124–135. https://doi.org/10.54536/ajase.v3i1.2776
Khalid, N., Hamidi, H. N. A., Thinagar, S., & Marwan, N. F. (2018). Crude palm oil price forecasting in Malaysia: An econometric approach. Jurnal Ekonomi Malaysia, 52(3), 263–278. https://doi.org/10.17576/JEM-2018-5203-19
Kumar, R. R., & Baishya, M. (2020). Forecasting of Potato Prices in India: An Application of ARIMA Model. Economic Affairs (New Delhi), 65(4), 473–479. https://doi.org/10.46852/0424-2513.4.2020.1
Lestari, D. W. L., & Dini, S. K. (2024). Forecasting The Price Of Shallots And Red Chilies Using The ARIMAX Model. EKSAKTA: Journal of Sciences and Data Analysis, 42–49. https://doi.org/10.20885/EKSAKTA.vol5.iss1.art5
Levkina, R., & Petrenko, A. (2020). Time Series Forecasting Of Price of The Agricultural Products Using Data Science. Agricultural and Resource Economics: International Scientific E-Journal, 7(2), 102–118.
Lindawati, L., Emalisa, & Situmorang, S. (2021). Analysis of beef price determinants in North Sumatera. IOP Conference Series: Earth and Environmental Science, 782(2), 022042. https://doi.org/10.1088/1755-1315/782/2/022042
Ministry of Agriculture. (2023). Outlook Komoditas Pertanian dan Peternakan. Jakarta: Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian. Retrieved from https://satudata.pertanian.go.id/datasets/publikasi/10
Pusat Sosial Ekonomi Kebijakan Pertanian. (2022). Antisipasi Potensi Dampak Konflik Rusia-Ukraina Terhadap Sektor Pertanian Indonesia. Policy Brief, pp. 1–6.
Raihan, P. K., & Harmini, H. (2023). Analisis Faktor – Faktor Yang Memengaruhi Harga Daging Sapi di Jawa Barat. Jurnal Agribisnis Indonesia, 11(1), 150–158. https://doi.org/10.29244/jai.2023.11.1.150-158
Rinanti, R. F., & Priyambodo, A. W. (2024). Tingkat Volatilitas Harga Daging Ayam Ras Di Jawa Timur Pada Bulan Ramadhan. Jurnal Buana Sains, 24(2), 1412–1638.
Sedghy, B. M., Tamini, L. D., & Lambert, R. (2016). Supply Response of Corn Farmers in Quebec: Analyzing the Impact of Prices Volatility? SSRN Electronic Journal, (2016–1). https://doi.org/10.2139/ssrn.3265470
Sena, D., & Nagwani, N. K. (2015). Application of time series based prediction model to forecast per capita disposable income. 2015 IEEE International Advance Computing Conference (IACC), 454–457. IEEE. https://doi.org/10.1109/IADCC.2015.7154749
Sims, C. R. (2017). Time Series Forecast Analysis in Wholesale Broiler Markets (University of Arkansas). University of Arkansas. Retrieved from http://scholarworks.uark.edu/cgi/viewcontent.cgi?article=4100%5C&context=etd
Verbeek, M. (2017). A Guide to Modern Econometrics (5th ed.). New Jersey: John Wiley and Sons Inc.
Yasmin, S., & Moniruzzaman, M. (2024). Forecasting of area, production, and yield of jute in Bangladesh using Box-Jenkins ARIMA model. Journal of Agriculture and Food Research, 16(May), 101203. https://doi.org/10.1016/j.jafr.2024.101203
Article Metrics
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Agro Ekonomi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats










