Optimizing Coral Fish Detection: Faster R-CNN, SSD MobileNet, YOLOv5 Comparison
Syifa Afnani Santoso(1*), Indra Jaya(2), Karlisa Priandana(3)
(1) IPB University
(2) IPB University
(3) IPB University
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] A. J. Woodhead, C. C. Hicks, A. V. Norstrom, G. J. Williams, and N. A. J. Graham, “Coral reef ecosystem services in the Anthropocene”, Coral Reef Functional Ecology in the Anthropocene, vol. 33, no. 6, pp. 1023-1034, Mar. 2019 [Online]. Available: https://doi.org/10.1111/1365-2435.13331
[2] A. Tuwo, and J. Tresnati, “Coral reef ecosystem” in Advances in Biological Sciences and Biotechnology, vol. 1, Y. Singh, India: Integrated Publications, 2020, pp. 75-104. Available: https://www.researchgate.net/publication/349485597_Coral_Reef_Ecosystem
[3] L. Fudjaja et al., “Anthropogenic activity and the destruction of coral reefs in the waters of small islands”, in IOP Conf. Series: Earth and Environmental Science, 2020, pp. 1-8. Available: https://iopscience.iop.org/article/10.1088/1755-1315/575/1/012057
[4] R. Iskandar, K. Z. Soemarno, and D. G. R. Wiadnya, “Coral reef condition with Chaetodontidae fish as the indicators in the waters of the Samber Gelap island of Kotabaru, South Kalimantan”, RJOAS, vol. 11, no. 107, Nov. 2020 [Online]. Available: https://doi.org/10.18551/rjoas.2020-11.10
[5] E. S. Reese, “Predation on Corals by Fishes of the Family Chaetodontidae: Implications for Conservation and Management of Coral Reef Ecosystems”, Bulletin of Marine Science, vol. 31, no. 3, pp. 594-604, Jul. 1981 [Online]. Available: https://www.ingentaconnect.com/content/umrsmas/bullmar/1981/00000031/00000003/art00011
[6] K. Wibowo, M. Adrim, and P. C. Makatipu, “Community structure of Chaetodontidae in the west of Banda Sea”, Mar. Res. Indonesia, vol. 38, no. 1, pp. 1-8, Feb. 2013 [Online]. Available: http://dx.doi.org/10.14203/mri.v38i1.51
[7] S. English, C. Wilkinson, and V. Baker, “Survey manual for tropical marine resources,” Townsville: Australian Institute of Marine Sciences, 1997. Available: https://www.aims.gov.au/sites/default/files/Survey%20Manual-sm01.pdf
[8] S. Villon et al., “A deep learning method for accurate and fast identification of coral reef fishes in underwater images,” Ecological Informatics, vol. 48, pp. 238-244, Nov. 2018 [Online]. Available: https://doi.org/10.1016/j.ecoinf.2018.09.007
[9] D. Pelletier, K. Leleu, G. Mou-tham, N. Guillemot, and P. Chabanet, “Comparison of visual census and high definition video transects for monitoring coral reef fish assemblages,” Fisheries Research, vol. 107, no. 1-3, pp. 84-93, Jan. 2011 [Online]. Available: https://doi.org/10.1016/j.fishres.2010.10.011
[10] W. Xu and S. Watzner, “Underwater fish detection using deep learning for water power applications,” in 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Nov. 2018, pp. 313-318 [Online]. Available: https://doi.org/10.1109/CSCI46756.2018.00067
[11] F. Han, J. Yao, H. Zhu, and C. Wang, “Underwater image processing and object detection based on deep CNN method,” Journal of Sensors, vol. 2020, pp. 1-20, May 2020 [Online]. Available: https://doi.org/10.1155/2020/6707328
[12] A. M. Munoz, M.-J. Moron-Fernandez, D. Cascado-Caballero, F. Diaz-del-Rio, and P. Real, “Autonomous Underwater Vehicles: Identifying Critical Issues and Future Perspectives in Image Acquisition,” Sensors, vol. 23, no. 10, pp. 1-27, May 2023 [Online]. Available: https://doi.org/10.3390/s23104986
[13] U. Alganci, M. Soydas, and E. Sertel, “Comparative research on deep learning approaches for airplane detection from very high-resolution satellite images,” Remote Sensing, vol. 12, no. 3, pp. 1-28, Feb. 2020 [Online]. Available: https://doi.org/10.3390/rs12030458
[14] R. Xu, H. Lin, K. Lu, L. Cao, and Y. Liu, “A forest fire detection system based on ensemble learning,” Forests, vol. 12, no. 2, pp. 1-17, Feb. 2021 [Online]. Available: https://doi.org/10.3390/f12020217
[15] A. Bakliwal et al., “Crowd counter: an application of centroid tracking algorithm,” International Research Journal of Modernization to Engineering Technology and Science, vol. 2, no. 4, pp. 1138-1141, April 2020 [Online]. Available: https://www.irjmets.com/uploadedfiles/paper/volume2/issue_4_april_2020/868/1628083008.pdf
[16] Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. Haq, “Understanding Convolutional Neural Network (CNN): A Review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739-748, Dec. 2022 [Online]. Availabe: https://doi.org/10.31763/ijrcs.v2i4.888
[17] M. M. Fahmy, “Confusion Matrix in Binary Classification Problems: A Step-by-Step Tutorial,” Journal of Engineering Research, vol. 6, no. 5, pp. T1-T12, Dec. 2022 [Online]. Available: https://dx.doi.org/10.21608/erjeng.2022.274526
[18] R. Padilla, S. L. Netto, and E. A. B. da Silva, "A Survey on Performance Metrics for Object-Detection Algorithms," in 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Jul. 2020, pp. 237-242. Available: https://doi.org/10.1109/IWSSIP48289.2020.9145130
[19] D. Choe, E. Choi, and D. K. Kim, “The real-time mobile application for classifying of endangered parrot species using the cnn models based on transfer learning,” Deep Learning in Mobile Information System, vol. 2020, pp. 1-13, Mar. 2020 [Online]. Available: https://doi.org/10.1155/2020/1475164
[20] S. Sterckval, “Google Coral Edge TPU vs NVIDIA Jetson Nano: a quick deep dive into EdgeAI performance,” 2019 [Online]. Available: https://medium.com/@samsterckval/google-coral-edge-tpu-vs-nvidia-jetson-nano-a-quick-deep-dive-into-edgeai-performance-bc7860b8d87a. [Accessed: 18-Jun-2023]
DOI: https://doi.org/10.22146/ijccs.95011
Article Metrics
Abstract views : 1808 | views : 1156Refbacks
- There are currently no refbacks.
Copyright (c) 2024 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1