Identification of Incung Characters (Kerinci) to Latin Characters Using Convolutional Neural Network
Tesa Ananda Putri(1), Tri Suratno(2*), Ulfa Khaira(3)
(1) Department of Information Systems, FST Universitas Jambi, Jambi
(2) Department of Information Systems, FST Universitas Jambi, Jambi
(3) Department of Information Systems, FST Universitas Jambi, Jambi
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] H. Mubarat, “Aksara Incung Kerinci Sebagai Sumber Ide Penciptaan Seni Kriya,” Ekspresi Seni, vol. 17, no. 2, 2015, doi: 10.26887/ekse.v17i2.101.
[2] P. Pudil, P. Somol, and M. Haindl, “Introduction To Statistical Pattern Recognition.,” Proc Natl Electron Conf, vol. 29, pp. 349–352, 1974, doi: 10.1016/0098-3004(96)00017-9.
[3] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.
[4] N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey,” IEEE Access, vol. 6, pp. 14410–14430, 2018, doi: 10.1109/ACCESS.2018.2807385.
[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, USA: The MIT Press, 2016.
[6] J. Ruiz-del-Solar, P. Loncomilla, and N. Soto, “A Survey on Deep Learning Methods for Robot Vision,” Mar. 2018, Accessed: Nov. 22, 2021. [Online]. Available: http://arxiv.org/abs/1803.10862.
[7] R. Khadijah and A. Nurhadiyatna, “Deep Learning for Handwritten Javanese Character Recognition,” Int. Conf. Informatics Comput. Sci., pp. 59–64, 2017.
[8] C. K. Dewa, A. L. Fadhilah, and Afiahayati, “Convolutional Neural Networks for Handwritten Javanese Character Recognition,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 12, no. 1, pp. 83–94, 2018, doi: 10.22146/ijccs.31144.
[9] N. Euclides, W. Nugroho, and A. Harjoko, “Transliteration of Hiragana and Katakana Handwritten Characters Using CNN-SVM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 15, no. 3, 2021.
[10] F. Ilham and N. Rochmawati, “Transliterasi Aksara Jawa Tulisan Tangan ke Tulisan Latin Menggunakan CNN,” JINACS (Journal Informatics Comput. Sci., vol. 01, no. 4, pp. 200–208, 2020.
[11] P. Grace W. Lindsay, “Convolutional neural networks as a model of the visual system: Past, present, and future,” J. Cogn. Neurosci., vol. 33, no. 10, pp. 2017–2031, 2021, doi: 10.1162/jocn_a_01544.
[12] X. Mao, S. Hijazi, R. Casas, P. Kaul, R. Kumar, and C. Rowen, “Hierarchical CNN for traffic sign recognition,” IEEE Intell. Veh. Symp., no. 4, pp. 130–135, 2016, doi: 10.1109/IVS.2016.7535376.
[13] B. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Commun. ACM, vol. 60, no. 6, 2017, doi: 10.1145/3065386.
[14] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the gap to human-level performance in face verification,” IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1701–1708, 2014, doi: 10.1109/CVPR.2014.220.
[15] B. V. Jauhari, J. Mardizal, Zulwachdi, and Yozerizal, Mengenal Aksara Incung Suku Kerinci Daerah Jambi. Sungai Penuh, Provinsi Jambi: Lembaga Bina Potensia Aditya Mahatva Yodha, 2013.
[16] B. V. Jauhari and Martono, Belajar Aksara Incung Suku Kerinci Daerah Jambi. Sungai Penuh, Provinsi Jambi: Lembaga Bina Potensia, 2013.
[17] F. Utaminingrum, A. W. Satria Bahari Johan, I. K. Somawirata, Risnandar, and A. Septiarini, “Descending stairs and floors classification as control reference in autonomous smart wheelchair,” J. King Saud Univ. - Comput. Inf. Sci., 2021, doi: 10.1016/j.jksuci.2021.07.025.
[18] Z. Ahmad and N. Khan, “CNN-Based Multistage Gated Average Fusion (MGAF) for Human Action Recognition Using Depth and Inertial Sensors,” IEEE Sens. J., vol. 21, no. 3, pp. 3623–3634, 2021, doi: 10.1109/JSEN.2020.3028561.
[19] P. L. Neary, “Automatic hyperparameter tuning in deep convolutional neural networks using asynchronous reinforcement learning,” IEEE Int. Conf. Cogn. Comput., pp. 73–77, 2018, doi: 10.1109/ICCC.2018.00017.
[20] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” pp. 1–31, 2016, [Online]. Available: http://arxiv.org/abs/1603.07285.
[21] W. Ng et al., “Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra,” Geoderma, vol. 352, pp. 251–267, Oct. 2019, doi: 10.1016/J.GEODERMA.2019.06.016.
[22] A. Ramdan, V. Zilvan, E. Suryawati, H. F. Pardede, and V. P. Rahadi, “Tea clone classification using deep CNN with residual and densely connections,” J. Teknol. dan Sist. Komput., vol. 8, no. 4, pp. 289–296, 2020, doi: 10.14710/jtsiskom.2020.13768.
DOI: https://doi.org/10.22146/ijccs.70939
Article Metrics
Abstract views : 2176 | views : 1801Refbacks
- There are currently no refbacks.
Copyright (c) 2022 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1