Extended Kalman Filter In Recurrent Neural Network: USDIDR Forecasting Case Study
Muhammad Asaduddin Hazazi(1), Agus Sihabuddin(2*)
(1) Master Program of Computer Science and Electronics, FMIPA UGM, Yogyakarta
(2) Department of Computer Science and Electronics, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
[1] A. Hector, M. Claudio dan S. Rodrigo, 2002, Artificial Neural Networks in Time series Forecasting: A Comparative Analysis, Kybernetika, Vol. 38, No. 6, pp. 685-707.
[2] S.E. Rumagit, 2012, Prediksi Pemakaian Listrik dengan Menggunakan Jaringan Syaraf Tiruan dan ARIMA di Wilayah Suluttenggo, Tesis, Program Studi S2 Ilmu Komputer, Universitas Gadjah Mada, Yogyakarta.
[3] E. Munarsih, 2011, Penerapan Model ARIMA - Neural Network Hybrid Untuk Peramalan Data Time Series, Tesis, Program Studi S2 Matematika, Universitas Gadjah Mada, Yogyakarta.
[4] D.U. Wutsqa, R. Kusumawati dan R. Subekti, 2014, The Application of Elman Recurrent Neural Network Model for Forecasting Consumer Price Index of Education, Recreation, and Sports in Yogyakarta, IEEE. 10th International Conference on Natural Computation, 192-196.
[5] A. Nandury dan L. Sherry, 2016, Anomaly Detection in Aircraft Data Using Recurrent Neural Network (RNN), Integrated Communications,Navigation, and Surveillance (ICNS), Herndon, VA, pp. 5C2-1-5C2-8.
[6] L. Susanti, A. Fariza, Setiawardhana, 2011, Peramalan Harga Saham Menggunakan Recurrent Neural Network dengan Algoritma Backpropagation Through Time (BPTT), Skripsi,Politeknik Elektronika Negeri Surabaya, Surabaya.
[7] J.A. Perez-Ortiz, J. Calera-Rubio dan M.L. Forcada, 2001, Online Text Prediction with Recurrent Neural Network, Neural Processing Letter 12: 127-140, Kluwer Academic Publisher, Netherlands.
[8] F. Syahrian, 2016, Perbandingan Metode Optimasi Stochastic Gradient Descent, Adadelta, Dan Adam Pada Jaringan Saraf Tiruan Dalam Klasifikasi Data Aritmia, Tesis, Program Studi S2 Ilmu Komputer, Universitas Gadjah Mada, Yogyakarta.
[9] A.S. Prabowo, A. Sihabuddin, A.S. Nugrahito, 2019, Adaptive Moment Estimation On Deep Belief NetworkFor Rupiah Currency Forecasting, Indonesian Journal of Computing and Cybernetics Systems (IJCCS), Vol.13, No.1 pp. 31~42, Yogyakarta.
[10] W. Xu, 2011, Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent, arxiv, July 13
[11] M. Cernansky dan L. Benuskova, 2003, Simple Recurrent Neural Network Trained By RTRL and Extended Kalman Filter Algorithm, Neural Network World, 13(3), pp. 223-234.
[12] P. Trebaticky, 2005, Recurrent Neural Network Training with Extended Kalman Filter, M.Bielikova (Ed.), IIT.SRC 2005, April 27, 2005, pp. 57-64.
[13] R. Adnan, F.A. Ruslan, A.M. Samad dan Z.M. Zain, 2013, New Artificial Neural Network and Extended Kalman Filter Hybrid Model of Flood Prediction System, IEEE 9th International Colloquium on Signal Processing and its Applications, 8 - 10 Maret 2013, Kuala Lumpur, Malaysia.
[14] A.N. Cernodub, 2014, Training Neural Network for Classification Using The Extended Kalman Filter: A Comparative Study, SSN 1060 992X, Optical Memory and Neural Networks (Information Optics), Vol. 23, No. 2, pp. 96- 103, Allerton Press, Inc.
DOI: https://doi.org/10.22146/ijccs.47802
Article Metrics
Abstract views : 4315 | views : 3516Refbacks
- There are currently no refbacks.
Copyright (c) 2019 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1