Multi-Domain Sentiment Analysis on Ibu Kota Nusantara (IKN) Tweets Using CNN-LSTM

https://doi.org/10.22146/ijccs.104925

Fahmi Reza Prasastio(1), Edi Winarko(2*)

(1) Department of Computer Science and Electronics, Universitas Gadjah Mada
(2) Department of Computer Science and Electronics, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


The construction of Ibu Kota Nusantara (IKN) is a national project aimed at relocating Indonesia’s capital from Jakarta to East Kalimantan. This project has sparked various public opinions, which are widely expressed through social media platforms such as Twitter. Sentiment analysis of these opinions is crucial for understanding public perception of the IKN project. However, previous sentiment analysis studies have often overlooked domain variations in the analyzed data, such as economy, environment, and politics, each of which has distinct linguistic characteristics. This study aims to develop a multi-domain sentiment analysis model by comparing three main methods: CNN-LSTM, CNN, and LSTM. The multi-domain model is designed to address the differences in characteristics across domains and enhance the model’s ability to capture more complex sentiment patterns. The results indicate that multi-domain models outperform single-domain models, as they improve classification performance by leveraging information from multiple domains. CNN-LSTM proved to be the best model, achieving the most balanced Accuracy and F1-Score across various scenarios. The use of Keyword Embedding also significantly enhances model performance, particularly benefiting LSTM, which initially had the lowest performance.

Keywords


Multi-Domain Sentiment Analysis; CNN-LSTM; Word Embedding; Keyword Embedding

Full Text:

PDF


References

Y. A. Pradana, I. Cholissodin, and D. Kurnianingtyas, “Analisis Sentimen Pemindahan Ibu Kota Indonesia pada Media Sosial Twitter menggunakan Metode LSTM dan Word2Vec,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, pp. 2389–2397, 2023.

A. Sa’rony, P. P. Adikara, and R. C. Wihandika, “Analisis Sentimen Kebijakan Pemindahan Ibukota Republik Indonesia dengan Menggunakan Algoritme Term-Based Random Sampling dan Metode Klasifikasi Naïve Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 10086–10094, 2019.

M. I. D. Sakariana, Indriati, and C. Dewi, “Analisis Sentimen Pemindahan Ibu Kota Indonesia Dengan Pembobotan Term BM25 Dan Klasifikasi Neighbor Weighted K-Nearest Neighbor,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, pp. 748–755, 2020.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

N. Lin, B. Chen, S. Fu, X. Lin, and S. Jiang, “Multi-domain Sentiment Classification on Self-constructed Indonesian Dataset,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12430 LNAI, no. March, pp. 789–801, 2020, doi: 10.1007/978-3-030-60450-9_62.

Z. Yuan, S. Wu, F. Wu, J. Liu, and Y. Huang, “Domain attention model for multi-domain sentiment classification,” Knowledge-Based Syst., vol. 155, no. May, pp. 1–10, 2018, doi: 10.1016/j.knosys.2018.05.004.

C. Yue, H. Cao, G. Xu, and Y. Dong, “Collaborative attention neural network for multi-domain sentiment classification,” Appl. Intell., vol. 51, no. 6, pp. 3174–3188, 2021, doi: 10.1007/s10489-020-02021-7.

R. Jamil, I. Ashraf, F. Rustam, E. Saad, A. Mehmood, and G. S. Choi, “Detecting sarcasm in multi-domain datasets using convolutional neural networks and long short term memory network model,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/peerj-cs.645.

S. N. Alsubari, S. N. Deshmukh, M. H. Al-Adhaileh, F. W. Alsaade, and T. H. H. Aldhyani, “Development of Integrated Neural Network Model for Identification of Fake Reviews in E-Commerce Using Multidomain Datasets,” Appl. Bionics Biomech., vol. 2021, 2021, doi: 10.1155/2021/5522574.

T. D. Dikiyanti, A. M. Rukmi, and M. I. Irawan, “Sentiment analysis and topic modeling of BPJS Kesehatan based on twitter crawling data using Indonesian Sentiment Lexicon and Latent Dirichlet Allocation algorithm,” J. Phys. Conf. Ser., vol. 1821, no. 1, 2021, doi: 10.1088/1742-6596/1821/1/012054.

Cohen Jacob, “A coefficient of agreement for nominal scales,” Educ. Psychol. Meas., vol. 20, no. 1, pp. 37-46 ST-A coefficient of agreement for nominal, 1960.

J. L. Fleiss, “Measuring nominal scale agreement among many raters,” Psychological Bulletin, vol. 76, no. 5. pp. 378–382, 1971, doi: 10.1037/h0031619.

Riccosan, K. E. Saputra, G. D. Pratama, and A. Chowanda, “Emotion dataset from Indonesian public opinion,” Data Br., vol. 43, pp. 0–5, 2022, doi: 10.1016/j.dib.2022.108465.

T. I. Z. M. Putra, S. Suprapto, and A. F. Bukhori, “Model Klasifikasi Berbasis Multiclass Classification dengan Kombinasi Indobert Embedding dan Long Short-Term Memory untuk Tweet Berbahasa Indonesia,” J. Ilmu Siber dan Teknol. Digit., vol. 1, no. 1, pp. 1–28, 2022, doi: 10.35912/jisted.v1i1.1509.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” 1st Int. Conf. Learn. Represent. ICLR 2013 - Work. Track Proc., pp. 1–12, 2013.

R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes, and A. Jatowt, “YAKE! Keyword extraction from single documents using multiple local features,” Inf. Sci. (Ny)., vol. 509, pp. 257–289, 2020, doi: 10.1016/j.ins.2019.09.013.

J. Gabín, M. E. Ares, and J. Parapar, “Keyword Embeddings for Query Suggestion,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13980 LNCS, pp. 346–360, 2023, doi: 10.1007/978-3-031-28244-7_22.

Y. Yuliska, D. H. Qudsi, J. H. Lubis, K. U. Syaliman, and N. F. Najwa, “Analisis Sentimen pada Data Saran Mahasiswa Terhadap Kinerja Departemen di Perguruan Tinggi Menggunakan Convolutional Neural Network,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 5, p. 1067, 2021, doi: 10.25126/jtiik.2021854842.



DOI: https://doi.org/10.22146/ijccs.104925

Article Metrics

Abstract views : 0 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2