Two-Step Iris Recognition Verification Using 2D Gabor Wavelet and Domain-Specific Binarized Statistical Image Features

https://doi.org/10.22146/ijccs.104157

Sri Mulyana(1*), Moh. Edi Wibowo(2), Arie Kurniawan(3)

(1) Gadjah Mada University
(2) Gadjah Mada University
(3) Gadjah Mada University
(*) Corresponding Author

Abstract


The Iris is one of the most reliable biometric features due to its complex textural properties. However, using coloured contact lenses renders the iris unreliable in iris recognition systems. Colored contact lenses are one of the spoofing methods in biometrics that can conceal a person's identity. To prevent spoofing, a two-step verification process is needed in the iris recognition system. The first verification step is to detect colored contact lenses, while the second is to recognize or match a person's identity. The feature extraction methods used are Domain Specific Binarized Statistical Image Features (DSBSIF) and Gabor Wavelet. The method for detecting contact lenses is Support Vector Machine (SVM), and matching is performed using Hamming Distance (HD). This study conducted experiments using single features, feature fusion, and hybrid feature extraction methods combining DSBSIF and Gabor Wavelet for two-step iris recognition verification. The results indicate that the hybrid feature extraction method of DSBSIF and Gabor Wavelet achieved the highest accuracy of 99.95% for the first verification and 95.40% for the second verification. These results are 0.02 and 0.31 percentage points better, respectively than previous methods in the first and second verifications.

Keywords


Iris Recognition; Spoofing; DBSIF; Gabor Wavelet

Full Text:

PDF


References

[1] D. Gragnaniello, G. Poggi, C. Sansone, and L. Verdoliva, “Using iris and sclera for detection and classification of contact lenses,” Pattern Recognit. Lett., vol. 82, pp. 251–257, Oct. 2016, doi: 10.1016/j.patrec.2015.10.009.

[2] G. Singh, R. K. Singh, R. Saha, and N. Agarwal, “IWT Based Iris Recognition for Image Authentication,” Procedia Comput. Sci., vol. 171, pp. 1868–1876, 2020, doi: 10.1016/j.procs.2020.04.200.

[3] K. Gopala Krishnan and P. T. Vanathi, “An efficient texture classification algorithm using integrated Discrete Wavelet Transform and local binary pattern features,” Cogn. Syst. Res., vol. 52, pp. 267–274, Dec. 2018, doi: 10.1016/j.cogsys.2018.07.015.

[4] J. Daugman, “How Iris Recognition Works,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1, pp. 21–30, Jan. 2004, doi: 10.1109/TCSVT.2003.818350.

[5] D. Yadav, N. Kohli, J. S. Doyle, R. Singh, M. Vatsa, and K. W. Bowyer, “Unraveling the Effect of Textured Contact Lenses on Iris Recognition,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 5, pp. 851–862, May 2013, doi: 10.1109/TIFS.2014.2313025.

[6] J. S. Doyle and K. W. Bowyer, “Robust Detection of Textured Contact Lenses in Iris Recognition Using BSIF,” IEEE Access, vol. 3, pp. 1672–1683, 2015, doi: 10.1109/ACCESS.2015.2477470.

[7] M. R. Dronky, W. Khalifa, and M. Roushdy, “Using residual images with BSIF for iris liveness detection,” Expert Syst. Appl., vol. 182, p. 115266, Nov. 2021, doi: 10.1016/j.eswa.2021.115266.

[8] M. Fang, N. Damer, F. Boutros, F. Kirchbuchner, and A. Kuijper, “Cross-database and cross-attack Iris presentation attack detection using micro stripes analyses,” Image Vis. Comput., vol. 105, p. 104057, Jan. 2021, doi: 10.1016/j.imavis.2020.104057.

[9] B. Kumar, A. Nigam, and P. Gupta, “Fully Automated Soft Contact Lens Detection from NIR Iris Images,” in Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, 2016, pp. 589–596. doi: 10.5220/0005702005890596.

[10] M. R. Dronky, W. Khalifa, and M. Roushdy, “Impact of segmentation on iris liveness detection,” in 2019 14th International Conference on Computer Engineering and Systems (ICCES), Dec. 2019, pp. 386–392. doi: 10.1109/ICCES48960.2019.9068147.

[11] P. Kulkarni, “Textured Contact Lenses Detection in Iris Recognition Using Weber Local Descriptor (WLD),” JETIR, vol. 6, no. 1, 2019, [Online]. Available: . www.jetir.org

[12] R. Biswas, J. Uddin, and M. J. Hasan, “A New Approach of Iris Detection and Recognition,” Int. J. Electr. Comput. Eng., vol. 7, no. 5, p. 2530, Oct. 2017, doi: 10.11591/ijece.v7i5.pp2530-2536.

[13] N. Ahmadi, M. Nilashi, S. Samad, T. A. Rashid, and H. Ahmadi, “An intelligent method for iris recognition using supervised machine learning techniques,” Opt. Laser Technol., vol. 120, p. 105701, Dec. 2019, doi: 10.1016/j.optlastec.2019.105701.

[14] X. Liu, Y. Bai, Y. Luo, Z. Yang, and Y. Liu, “Iris recognition in visible spectrum based on multi-layer analogous convolution and collaborative representation,” Pattern Recognit. Lett., vol. 117, pp. 66–73, Jan. 2019, doi: 10.1016/j.patrec.2018.12.003.

[15] A. Czajka, D. Moreira, K. Bowyer, and P. Flynn, “Domain-Specific Human-Inspired Binarized Statistical Image Features for Iris Recognition,” in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Jan. 2019, pp. 959–967. doi: 10.1109/WACV.2019.00107.

[16] J. Kannala and E. Rahtu, “BSIF: Binarized Statistical Image Features,” 21st Int. Conf. Pattern Recognit. (ICPR 2012), 2012.

[17] B. Attallah, A. Serir, Y. Chahir, and A. Boudjelal, “Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction,” J. Electron. Imaging, vol. 26, no. 06, p. 1, Nov. 2017, doi: 10.1117/1.JEI.26.6.063006.

[18] A. Kumawat, S. Panda, V. C. Gerogiannis, A. Kanavos, B. Acharya, and S. Manika, “A Hybrid Approach for Image Acquisition Methods Based on Feature-Based Image Registration,” J. Imaging, vol. 10, no. 9, p. 228, Sep. 2024, doi: 10.3390/jimaging10090228.

[19] S. Kaur and P. Kaur, “Review and Analysis of Various Image Enhancement Techniques,” Int. J. Comput. Appl. Technol. Res., vol. 4, no. 5, pp. 414–418, May 2015, doi: 10.7753/IJCATR0405.1016.

[20] H. A. Biu, R. Husain, and A. S. Magaji, “An enhanced iris recognition and authentication system using energy measure,” Sci. World J., vol. 13, no. 1, pp. 11–17, 2018.

[21] H. K. Rana, M. S. Azam, M. R. Akhtar, J. M. W. Quinn, and M. A. Moni, “A fast iris recognition system through optimum feature extraction,” PeerJ Comput. Sci., vol. 5, p. e184, Apr. 2019, doi: 10.7717/peerj-cs.184.

[22] G. Gautam and S. Mukhopadhyay, “Challenges, taxonomy and techniques of iris localization: A survey,” Digit. Signal Process., vol. 107, p. 102852, Dec. 2020, doi: 10.1016/j.dsp.2020.102852.

[23] M. I. A. Vachroni, “Deteksi Kontak Lensa Pada Mata Menggunakan Ekstraksi Ciri Domain Specific Binarized Statistical Image Features dan Discrete Wavelet Transform,” University Gadjah Mada, 2022.

[24] S. Arivazhagan, L. Ganesan, and S. P. Priyal, “Texture classification using Gabor wavelets based rotation invariant features,” Pattern Recognit. Lett., vol. 27, no. 16, pp. 1976–1982, Dec. 2006, doi: 10.1016/j.patrec.2006.05.008.

[25] K. L. Weiss et al., “Hybrid Convolution Kernel: Optimized CT of the Head, Neck, and Spine,” Am. J. Roentgenol., vol. 196, no. 2, pp. 403–406, Feb. 2011, doi: 10.2214/AJR.10.4425.

[26] M. N. Ulwan, “Pattern Recognition pada Unstructured Data Teks Menggunakan Support Vector Machine dan Association,” Universitas Islam Indonesia Yogyakarta, 2016.

[27] M. Abbasi, “Improving identification performance in iris recognition systems through combined feature extraction based on binary genetics,” SN Appl. Sci., vol. 1, no. 7, p. 730, Jul. 2019, doi: 10.1007/s42452-019-0777-9.

[28] D. A. T. Muhamad Ilham Aji Vachroni , Raden Sumiharto, “Contact Lens Detection Using Domain Specific BSIF and Discrete Wavelet Transform,” Khazanah Inform., vol. 9, no. 2, pp. 146–154, 2023, doi: https://doi.org/10.23917/khif.v9i2.20084.

[29] M. Omran and E. N. AlShemmary, “An Iris Recognition System Using Deep convolutional Neural Network,” J. Phys. Conf. Ser., vol. 1530, no. 1, p. 012159, May 2020, doi: 10.1088/1742-6596/1530/1/012159.



DOI: https://doi.org/10.22146/ijccs.104157

Article Metrics

Abstract views : 0 | views : 0

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2