Predicting Resale Prices using Random Forests with Fine-Tuning Hyperparameters

https://doi.org/10.22146/ijccs.103967

Herman Widjaja(1*), Nanda Perdana(2), Ito Wasito(3)

(1) Universitas Pradita
(2) Universitas Pradita
(3) Universitas Pradita
(*) Corresponding Author

Abstract


The accurate prediction of housing prices is essential for informed decision-making by purchasers, sellers, and policymakers in dynamic real estate markets. This study investigates the application of machine learning models—Random Forest, XGBoost, Decision Tree, and LightGBM—to predict resale flat prices in Singapore. It provides valuable insights into the use of machine learning in housing markets, particularly for datasets with similar size, complexity, and data types. The objectives are to develop predictive regression models for property prices and to analyze and compare the performance of these models. Key contributions include the development of tools to objectively estimate suitable property prices and the advancement of price prediction research through an extensive comparison of machine learning models. While previous studies have demonstrated the predictive capabilities of these models, this research focuses on the impact of hyperparameter tuning on the performance of the Random Forest model. By systematically optimizing parameters such as max_depth, n_estimators, and n_jobs, computation time was reduced by over 93% (from 865 seconds to 50 seconds) with minimal loss in accuracy. With proper hyperparameter tuning, Random Forest achieved the best performance in terms of MAE score (26.555), outperforming XGBoost (27.552), Decision Tree (28.832), and LightGBM (29.752).


Keywords


Random Forest, Hyperparameter Tuning, Housing Price Prediction, XGBoost, Decision Tree

Full Text:

PDF


References

M. Yazdani, “Machine Learning, Deep Learning, and Hedonic Methods for Real Estate Price Prediction,” Oct. 2021, [Online]. Available: http://arxiv.org/abs/2110.07151

A. G. Rawool, D. V Rogye, S. G. Rane, D. R. Vinayk, and A. Bharadi, “House Price Prediction Using Machine Learning,” 2021.

S. Bhushan Jha, R. F. Babiceanu, V. Pandey, and R. K. Jha, “Housing Market Prediction Problem using Different Machine Learning Algorithms: A Case Study.”

G. of S. Housing and Development Board, “Resale flat prices based on registration date from Jan-2017 onwards,” data.gov.sg. Accessed: Oct. 23, 2024. [Online]. Available: https://data.gov.sg/datasets/d_8b84c4ee58e3cfc0ece0d773c8ca6abc/view

N. H. Zulkifley, S. A. Rahman, N. H. Ubaidullah, and I. Ibrahim, “House price prediction using a machine learning model: A survey of literature,” International Journal of Modern Education and Computer Science, vol. 12, no. 6, pp. 46–54, 2020, doi: 10.5815/ijmecs.2020.06.04.

A. J. Aminuddin, “A Review on The Performance of House Price Index Models: Hedonic Pricing Model Vs Artificial Neural Network Model,” International Journal of Accounting, Finance and Business (IJAFB), no. 39, pp. 53–63, Mar. 2022, doi: 10.55573/IJAFB.073906.

T. Quang, N. Minh, D. Hy, and M. Bo, “Housing Price Prediction via Improved Machine Learning Techniques,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 433–442. doi: 10.1016/j.procs.2020.06.111.

W. K. O. Ho, B. S. Tang, and S. W. Wong, “Predicting property prices with machine learning algorithms,” Journal of Property Research, vol. 38, no. 1, pp. 48–70, 2021, doi: 10.1080/09599916.2020.1832558.

P. Kanadiya, P. M. Chawan, and P. J. Kanadiya, “A KNN-Linear Regression Fusion Approach for Improved Real Estate Price Estimation,” International Research Journal of Engineering and Technology, 2024, [Online]. Available: https://www.researchgate.net/publication/384322683

P. Y. Wang, C. T. Chen, J. W. Su, T. Y. Wang, and S. H. Huang, “Deep learning model for house price prediction using heterogeneous data analysis along with joint self-attention mechanism,” IEEE Access, vol. 9, pp. 55244–55259, 2021, doi: 10.1109/ACCESS.2021.3071306.

S. Fatima, A. Hussain, S. Bin Amir, S. Haseeb Ahmed, and S. Muhammad Huzaifa Aslam, “XGBoost and Random Forest Algorithms: An In-Depth Analysis,” Pakistan Journal of Scientific Research, PJOSR, vol. 3, no. 1, pp. 26–31, Jun. 2023.

M. Mohan Tito Ayyalasomayajula, S. Bussa, and S. Ayyalasomayajula, “Forecasting Home Prices Employing Machine Learning Algorithms: XGBoost, Random Forest, and Linear Regression,” ESP Journal of Engineering & Technology Advancements, vol. 1, no. 1, pp. 125–133, Sep. 2021, doi: 10.56472/25832646/JETA-V1I1P114.

E. Henriksson and K. Werlinder, “Housing Price Prediction over Countrywide Data A comparison of XGBoost and Random Forest regressor models,” KTH Royal Institute of Technology, Stockholm, Sweden, 2021.

S. Bhushan Jha, R. F. Babiceanu, V. Pandey, and R. K. Jha, “Housing Market Prediction Problem using Different Machine Learning Algorithms: A Case Study,” 2020.

M. Thamarai and S. P. Malarvizhi, “House Price Prediction Modeling Using Machine Learning,” International Journal of Information Engineering and Electronic Business, vol. 12, no. 2, pp. 15–20, Apr. 2020, doi: 10.5815/ijieeb.2020.02.03.

L. Breiman, Random Forests, vol. 45. Netherland: Kluwer Academic Publishers, 2001.

A. Hjort, J. Pensar, I. Scheel, and D. E. Sommervoll, “House price prediction with gradient boosted trees under different loss functions,” Journal of Property Research, vol. 39, no. 4, pp. 338–364, 2022, doi: 10.1080/09599916.2022.2070525.

A. L. John and S. Shaikh, “Predicting House Prices using Machine Learning and LightGBM,” 2022. [Online]. Available: https://ssrn.com/abstract=4108744

S. Abdul-Rahman, S. Mutalib, S. Alam, M. Nor, H. Zulkifley, and M. I. Ibrahim, “Advanced Machine Learning Algorithms for House Price Prediction: Case Study in Kuala Lumpur,” 2021. [Online]. Available: www.ijacsa.thesai.org

H. Li, “House price prediction based on machine learning,” Applied and Computational Engineering, vol. 4, no. 1, pp. 623–628, May 2023, doi: 10.54254/2755-2721/4/2023362.

W. Mulia, M. Lista, and A. SSi, “Comparison of Random Forest, XGBoost, and LightGBM Methods in Estimating Airbnb Accommodation Rental Prices Based on Customers in New York City,” 2023.

R. F. N. Iskandar, D. H. Gutama, D. P. Wijaya, and D. Danianti, “Klasifikasi Menggunakan Metode Random Forest untuk Awal Deteksi Diabetes Melitus Tipe 2,” Jurnal Teknik Industri Terintegrasi, vol. 7, no. 3, pp. 1620–1626, Jul. 2024, doi: 10.31004/jutin.v7i3.26916.

H. Hafid, “Penerapan K-Fold Cross Validation untuk Menganalisis Kinerja Algoritma K-Nearest Neighbor pada Data Kasus Covid-19 di Indonesia,” Journal of Mathematics, Computations and Statistics, vol. 6, no. 2, pp. 161–168, Oct. 2023, [Online]. Available: http://www.ojs.unm.ac.id/jmathcos

scikit-learn.org, “RandomForestRegressor.” Accessed: Dec. 03, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?utm_source=chatgpt.com

L. Zhang, “Housing Price Prediction Using Machine Learning Algorithm,” Journal of World Economy, vol. 2, no. 3, pp. 18–26, Sep. 2023, doi: 10.56397/jwe.2023.09.03.



DOI: https://doi.org/10.22146/ijccs.103967

Article Metrics

Abstract views : 387 | views : 343

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2