Working Memory Versus Inhibitory Control: Sebuah Kajian Neuropsikologi Mengenai Peran Informasi Tidak Relevan

Nani Restati Siregar
(Submitted 4 February 2020)
(Published 28 June 2021)


Studi terdahulu melaporkan bahwa working memory (WM) memainkan peran penting dalam mengabaikan informasi tidak relevan sehingga hanya informasi relevan saja yang bekerja pada sistem working memory. Studi lainnya melaporkan bahwa inhibition control (IC) diperlukan untuk menghambat stimulus yang tidak relevan dan menghambat respons yang tidak dihendaki. WM dan IC adalah dua konstrak kognitif yang berbeda dan keduanya memberikan respons pada informasi tidak relevan. Namun, bagaimanakah dinamika kedua konstrak tersebut merespons informasi tidak relevan? Studi literatur kali ini bermaksud untuk menguraikan: (a) konsep mengenai working memory (WM) dan inhibitory control (IC); (b) mekanisme neural pada informasi yang tidak relevan; (c) mekanisme neural working memory dan inhibitory control pada informasi yang tidak relevan. Studi literatur ini menyimpulkan bahwa kapasitas working memory dan inhibitory control merupakan mekanisme kontrol kognitif terhadap informasi tidak relevan. Prefrontal cortex pada otak teraktivasi ketika working memory dan inhibitory control merespons informasi tidak relevan. Namun, working memory hanya menandai atau mengabaikan informasi tidak relevan sementara inhibitory control menghambat informasi tidak relevan. Inhibitory control memperkuat dan meningkatkan kinerja working memory ketika informasi tidak relevan tidak hanya cukup untuk diabaikan saja.


informasi tidak relevan, inhibitory control; neuropsikologi; working memory

Full Text: XML

DOI: 10.22146/buletinpsikologi.54048


Abdul Hamid, K., Yusoff, A. N., Rahman, S., Osman, S. S., Azmi, N. H., Surat, S., & Ahmad Marzuki, M. (2019). Cortical differential responses during divergent thinking tasks after creativity stimulation. Psychology & Neuroscience, 12(3), 342–362.

Almaric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Science, 113(18), 4909-4917.

Ahveninen, J., Seidman, L. J., Chang, W-T., Hämäläinin, M., & Huang, S. (2017). Suppression of irrelevant sounds during auditory working memory. NeuroImage, 161, 1-8.

Arnsten, A. F. T., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress, 1, 89–99.

Artuso, C., & Palladino, P. (2019). Long-term memory effects on working memory updating development. PLoS ONE, 14(5), e0217697.

Aydmune, Y., Introzzi, S., Zamora, E., & Stelzer, F. (2019). Inhibiting processes and fluid intelligence: A performance at early years of schooling. International Journal of Psychological Research, 13(1), 29-39.

Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1-29.

Baier, B., Karnath, H. O., Dietrich, M., Birklein, F., Heinze, C., & Müller, N. (2010). Keeping memory clear and stable – The contribution of human basal ganglia and prefrontal cortex to working memory. Journal of Neuroscience, 30(29), 9788-9792.

Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social cognitive and Affective Neuroscience, 2(4), 303–312.

Blair, C., Knipe, H., & Gamson, D. A. (2008). Is there a role for executive functions in the development of mathematics ability? Mind, Brain, and Education, 2(2), 80-89.

Blasiman, R. N., & Was, C. A. (2018). Why is working memory performance unstable? A review of 21 factors. Europe’s Journal of Psychology, 14(1), 188-231.

Blumenfeld, H., & Marian, V. (2014). Cognitive control in bilinguals: Advantages in stimulus–stimulus inhibition. Bilingualism: Language and Cognition, 17(3), 610-629.

Bocincova, A., & Johnson, J. (2019). The time course of encoding and maintenance of task-relevant versus irrelevant object features in working memory. Cortex, 111, 196-209.

Borella, E., & de Ribaupierre, A. (2013). The role of working memory, inhibition, and processing speed in text comprehension in children. Learning and Individual Differences, 34, 86-92.

Brookman-Byrne, A., Mareschal, D., Tolmie, A. K., & Dumontheil, I. (2018). Inhibitory control and counterintuitive science and maths reasoning in adolescence. PloS ONE, 13(6), e0198973.

Brooks, S. J., Funk, S. G., Young, S. Y., & Schiöth, H. B. (2017). The role of working memory for cognitive control in anorexia nervosa versus substance use disorder. Frontiers in Psychology, 8, 1651.

Brosch, T., Schiller, D., Mojdehbakhsh, R., Uleman, J. S., & Phelps, E. A. (2013). Neural mechanisms underlying the integration of situational information into attribution outcome. Social Cognitive and Affective Neuroscience, 8(6), 640-646.

Burhan, A. M., Anazodo, U. C., Chung, J. K., Arena, A., Graff-Guerrero, A., & Mitchell, D. G. V. (2016). The effect of task-irrelevant fearful-face distractor on WM processing in mild cognitive impairement versus healthy control: An exploratory fMRI study in female participants. Behavioral Neurology, 2016, 1637392.

Chamorro, Y., Treviño, M., & Matute, E. (2017). Educational and cognitive predictors of pro- and antisaccadic performance. Frontiers in Psychology, 8, 2009.

Choi, W., Desai, R. H., & Henderson, J. M. (2014). The neural substrates of natural reading: A comparison of normal and nonword text using eyetracking and fMRI. Frontiers in Human Neuroscience, 8, 1024.

Chiappe, P., Hasher, L., & Siegel, L. S. (2000). Working memory, inhibitory control, and reading disability. Memory & Cognition, 28(1), 8–17.

Clapp, W. C., Rubens, M. T., & Gazzaley, A. (2010). Mechanisms of working memory disruption by external interference. Cerebral Cortex, 20(4), 859–872.

Constatinidis, C., & Luna, B. (2019). Neural substrates of inhibiting control maturation in adolescence. Trends in Neuroscience, 42(9), 604-616.

Cowan, N. (2014). Working memory underpins cognitive development, learning, and education. Educational Psychology Review, 26(2), 197–223.

Cowan, N., & Morey, C. C. (2006). Visual working memory depends on attentional filtering. Trends in Cognitive Sciences, 10(4), 139–141.

Crone, E.A., Wendelken, C., Donchve,S., & van Leijenhorst, L. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Science, 103(24), 9315-9320.

De Houwer, J., Hughes, S., & Barnes-Holmes, D. (2016). Associative learning as higher order cognition: Learning in human and nonhuman animals from the perspective of propositional theories and relational frame theory. Journal of Comparative Psychology, 130(3), 215–225.

Derrfuss, J., Ekman, M., Hanke, M., Tittgemeyer, M., & Fiebach, C. J. (2017). Distractor-resistant short-term memory is supported by transient changes in neural stimulus representations. Journal of Cognitive Neuroscience, 29(9), 1547–1565.

Dillon, D. G., & Pizzagalli, D. A. (2007). Inhibition of action, thought, and emotion: A selective neurobiological review. Applied & Preventive Psychology, 12(3), 99–114.

Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. J. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5(4), F9-F16.

Egner, T., Elano, M., & Hirsch, J. (2006). Separate conflict–specific cognitive control mechanisms in the human brain. Neuroimage, 35(2), 940-948.

El Massioui, N., Lamirault, C., Yagüe, S., Adjeroud, N., Garces, D., Maillard, A.,…& Doyère, V. (2016). Impaired decision making and loss of inhibitory-control in a rat model of Huntington disease. Frontiers in Behavioral Neuroscience, 10, 204.

Endres, M. J., Houpt, J. W., Dunkin, C., & Fin, P. R. (2015). Working memory capacity and redundant information processing efficiency. Frontiers in Psychology, 6, 594,

Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 33–46.

Fabius, J. H., Mathôt, S., Schut, M. J., Nijboer, T. C. W., & der Stigchel, S. V. (2017). Focus of spatial attention during spatial working memory maintenance: Evidence from pupillary light response. Visual Cognition, 25(1-3), 10-20.

Fallon, S. T., Dolfen, N., Parolo, F., Zokei, N., & Husain, M. (2019). Task–irrelevant financial losses inhibit the removal of information from working memory. Scientific Reports, 9, 1673.

Fallon, S. T., Mattiesing, R. M., Dolfen, N., Manohar, S. G., & Husain, M. (2018). Ignoring versus updating in working memory reveal differential roles of attention and feature binding. Cortex, 107, 50-63.

Fastame, M. C. (2020). Visual and spatial working memory skills implicated in copying and drawing from memory of The Rey-Osterrieth Complex Figure. What relationship in the school-aged children? Cognitive Development, 53, 100826.

Finkelmeyer, A., Kellerman, T., Bude, D., Nießen, T., Schwenzer, M., Mathiak, K., & Reske, M. (2010). Effects of aversive odour presentation on inhibitory control in the stroop colour–word interference task. BMC Neuroscience, 11, 131.

Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22(1), 79–92.

Geng, H., Song, Q., Li, Y., & Zhu, Y. (2005). The effect of attention to distractor on inhibitory process in selective attention. Chinese Science Bulletin, 50(16), 1743-1750.

Greiff, S., Wüstenberg, S., Goetz, T., Vainikainen, M. P., Hautamäki, J., & Bornstein, M. H. (2015). A longitudinal study of higher-order thinking skills: working memory and fluid reasoning in childhood enhance complex problem solving in adolescence. Frontiers in Psychology, 6, 1060.

He, N., Rolls, E. T., Zhao, W., & Guo, S. (2019). Predicting human inhibitory control from brain structural fMRI. Brain Imaging and Behavior, 14(6), 2148-2158.

Heathcote, A., Coleman, J. R., Eidels, A., Watson, J. M., Houpt, J., & Strayer, D. L. (2015). Working memory’s workload capacity. Memory & Cognition, 43, 973-989.

Howard, C. J., Pole, R., Montgomery, P., Woodward, A., Guest, D., Standen, B.,….& Crowe, E. M. (2020). Visual spatial attention and spatial working memory do not draw on shared capacity-limited core processes. Quarterly Journal of Experimental Psychology, 73(5), 799-818.

Huang, J., Kahana, M. J., & Sekuler, R. (2009). A task-irrelevant stimulus attribute affects perception and short-term memory. Memory & Cognition, 37(8), 1088–1102.

Ivancovsky, T., Kleinmintz, O., Lee, J., Kurman, J., & Shamay-Tsoory, S. G. (2018). The neural underpinings of cross-cultural differences in creativity. Human Brain Mapping, 39(11), 4493-4508.

Jacqui, A. M., Miriam, H. B., Judith, A. C., & Peter, J. A. (2014). Age-related differences in inhibitory control in the early school years. Child Neuropsychology, 20(5), 509-526.

Jaeger, A. (2013). Inhibitory control and the adolescent brain: A review of fMRI research. Psychology & Neuroscience, 6(1), 23-30.

Janowich, J., Mishra, J., & Gazzaley, A. (2015). A cognitive paradigm to investigate interference in working memory by distractions and interruptions. Journal of Visualized Experiments, 101, e52226.

Karlsson, J., Jolles, D., Koornneef, A., van den Broek, P., & Leijenhorst, L.V. (2019). Individual differences in children’s comprehension of temporal relation: Dissociable contributions of working memory capacity and working memory updating. Journal of Experimental Child Psychology, 185, 1-18.

Keijzer M. (2013). Working memory capacity, inhibitory control and the role of L2 proficiency in aging L1 Dutch speakers of near-native L2 English. Brain Sciences, 3(3), 1261–1281.

Kesler, S. R., Sheau, K., Koovakkattu, D., & Reiss, A. L. (2011). Changes in frontal-parietal activation and math skills performance following adaptive number sense training: preliminary results from a pilot study. Neuropsychological Rehabilitation, 21(4), 433–454.

Koizumi, A., Lau, H., Shimada, Y., & Kondu, H.M. (2018). The effect neurochemical balance in the anterior cingulate cortex and dorsolateral prefrontal cortex on volitional control under irrelevant distraction. Consciousness and Cognition, 59, 104-111.

Künstler, E., Finke, K., Günther, A., Klingner, C., Witte, O., & Bublak, P. (2018). Motor-cognitive dual-task performance: Effects of a concurrent motor task on distinct components of visual processing capacity. Psychological Research, 82(1), 177–185.

Laing, P. A. F., Burns, N., & Baetu, I. (2019). Individual differences in anxiety and fear learning: The role of working memory capacity. Acta Psychologia, 193, 42-54.

Leontyev, A., Sun, S., Wolfe, M., & Yamauchi, T. (2018). Augmented go/no-go task: Mouse cursor motion measures improve ADHD symptom assessment in healthy college students. Frontiers in Psychology. 9, 496.

Lilienthal, L., Rose, N. S., Tamez, E., Myerson, J., & Hale, S. (2015). Individuals with low working memory spans show greater interference from irrelevant information because of poor source monitoring, not greater activation. Memory & Cognition, 43(3), 357–366.

Linck, J. A., & Weiss, D. J. (2015). Can working memory and inhibitory control predict second language learning in the classroom? SAGE Open, 5(4), 1-11.

Little, D. R., Lewandowsky, S., & Craigg, S. (2014). Working memory capacity and fluid abilities: The more difficult the item, the more is better. Frontiers in Psychology, 5, 239.

Lockwond, P. L., & Wittmann, M. K. (2018). Ventral anterior cingulate cortex and social decision-making. Neuroscience & Biobehavioral Reviews, 92, 187-191.

Luck, S. T., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Science, 17(8), 391-400.

Luijten, M., Littel, M., & Franken, I. H. A. (2011). Deficits in inhibitory control in smokers during a go/nogo task: An investigation using event-related brain potentials. PLoS ONE, 6(4), e18898.

Lustig, C., Hasher, L., & Tonev, S. T. (2001). Inhibitory control over the present and the past. European Journal of Cognitive Psychology, 13(1-2), 107-122.

Lv, K. (2015). The involvement of working memory and inhibition functions in the different phases of insight problem solving. Memory & Cognition, 43, 709-722.

Macdonald, J. A., Beauchamp, M. H., Crigan, J. A., & Anderson, P. J. (2014). Age–related differences in inhibitory control in the early school years. Child Neuropsychology, 20(5), 509-526.

Manza, P., Hau, C, L, H., & Leung, H-C. (2014). Alpha power gates relevant information during working memory updating. Journal of Neuroscience, 34(17), 5998-6002.

Maraver, M. J., Bajo, M. T., & Gomez-Ariza, C. J., (2016). Training on working memory and inhibitory control in young adults. Frontiers in Human Neuroscience, 10, 588.

Martyr, A., Boycheva, E., & Kudlicka, A. (2019). Assessing inhibitory control in early-stage Alzheimer’s and Parkinson’s disease using the Hayling Sentence Completion Test. Journal of Neuropsychology, 13(1), 67–81.

McRae, K., Hughes, B., Chopra, S., Gabrieli, J. D., Gross, J. J., & Ochsner, K. N. (2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22(2), 248–262.

Medina, L. D., Sadler, M., Yeh, M., Filoteo, J. V., Woods, S. P., & Gilbert, P. E. (2019). Collectivism is associated with greater neurocognitive fluency in older adults. Frontiers in Human Neuroscience, 13, 122.

Mertes, C., Wascher, E., & Schneider, D. (2016). From capture to Inhibition: How does irrelevant information influence visual search? Evidence from a spatial cuing paradigm. Frontiers in Human Neuroscience, 10, 232.

Meyer, H. C., & Bucci, D. J. (2016). Neural and behavioral mechanisms of proactive and reactive inhibition. Learning Memory, 23(10), 504-514.

Michal, A. L., Lleras, A., & Beck, D. M. (2014). Relative contributions of task–relevant and task–irrelevant dimensions in priming of pop–out. Journal of Vision, 14(12), 14.

Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalea, T., & Cohen, N. T. (2002). Attentional control in the aging brain: Insight from an fMRI study of the stroop task. Brain and Cognition, 49(3), 277-296.

Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 8-14.

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive function and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49-100.

Moehring, A., Schroeders, U., & Wilhelm, O. (2018). Knowledge is power for medical assistants: Crystallized and fluid intelligence as predictors of vocational knowledge. Frontiers in Psychology, 9, 28.

van Moorselar, D., & Slagter, H. A. (2019). Learning what is irrelevant or relevant: Expectations facilitate distractor inhibition and target facilitation through distinct neural mechanisms. Journal of Neuroscience, 39(35), 6953-6967.

Na, D. G., Ryu, J. W., Byun, H. S., Choi, D. S., Lee, E. J., Chung, W. I., … Han, B. K. (2000). Functional MR imaging of working memory in the human brain. Korean Journal of Radiology, 1(1), 19–24.

Nakagawa, S., Takeuchi, H., Taki, Y., Nouchi, R., Kotozaki, Y., Shinada, T., ….., & Kawashima, R. (2019). Mean diffusity related collectivism among university students in Japan. Scientific Reports, 9, 1338.

Nasr, S., Moeeny, A., & Esteky, H. (2008). Neural correlate of filtering of irrelevant information from visual working memory. PLoS One, 3(9), e3282.

Neill, W. T., Valdes, L. A., & Terry, K. M. (1995). Selective attention and the inhibitory control of cognition. Dalam F. N. Dempster & C. J. Brainerd (Eds.), Interference and Inhibition in Cognition (hal. 207-261). Academic Press.

Noreen, S., & MacLeod, M. D. (2015). What do we really know about cognitive inhibition? Task demands and inhibitory effects across a range of memory and behavioural tasks. PloS One, 10(8), e0134951.

Oberauer, K. (2019). Working memory and attention – A conceptual analysis and review. Journal of Cognition, 2(1), 36.

Oswald, J. P., Trembly, S., & Jones, D. M. (2000). Disruption of comprehension by the meaning of irrelevant sound. Memory, 8(5), 345-350.

Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011). Posterior cingulate cortex: Adapting behavior to a changing world. Trends in Cognitive Sciences, 15(4), 143–151.

Pennequin, V., Sorel, O., & Mainguy, M. (2010). Metacognition, executive functions and aging. The effect of training in the use of metacognitive skills to solve mathematical word problems. Journal of Adult Development, 17, 168-176.

Pimperton, H., & Nation, K. (2010). Suppressing irrelevant information from working memory: Evidence for domain-specific deficits in poor comprehenders. Journal of Memory and Language, 62(4), 380-391.

Piotrowski, K. T., Orzechowski, J., & Stettner, Z. (2019). The nature of inhibition in working memory search task. Journal of Cognitive Psychology, 31(3), 285-302.

Pisoni, D. B., & Cleary, M. (2003). Measures of working memory span and verbal rehearsal speed in deaf children after cochlear implantation. Ear and Hearing, 24(1 Suppl), 106S–20S.

Plancher, G., Gyselinck, V., & Piolino, P. (2018). The integration of realistic episodic memories relies on different working memory processing: Evidence from virtual navigation. Frontiers in Psychology, 9, 47.

Poirel N, Borst G, Simon G, Rossi S, Cassotti M, Pineau A, …., Houdé, O. (2012). Number conservation is related to children’s prefrontal inhibitory control: An fMRI study of a Piagetian task. PLoS One, 7(7): e40802.

Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith, E. E. (2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28(51), 13786–13792.

Pornpattananangkul, N., Hariri, A. R., Harada, T., Mano, Y., Komeda, H., Parrish, T. B., ….& Chiao, J. Y. (2016). Cultural influences on neural basis of inhibitory control. Neuroimage, 139, 114-126.

Pretto, M. P., Hartmann, L., Garcia – Burgos, D., Sallard, E., & Spierer, L. (2019). Stimulus reward value interacts with training-induced plasticity in inhibitory control. Neuroscience, 421, 82-94.

Preuss, H., Leister, L., Pinnow, M., & Legenbauer, T. (2019). Inhibitory control pathway to disinhibited eating: A matter of perspective. Appetite, 141, 104297.

Roets, A., Hiel, A. V., Cornelis, I., & Soetans, B. (2008). Determinants of task performance and invested effort: A need for closure by relative cognitive capacity interaction analysis. Personality and Social Psychology Bulletin, 34(6), 779-792.

Rolls, E. T. (2019). The cingulate cortex and limbic system for emotion, action and memory. Brain, Structure and Function, 224(9), 3001-3018.

Rop, G., van Wermeskerken, M., de Nooijer, J.A., Verkoeijen, P. P. J. L., & van Goget, T. (2018). Task experience as a boundary condition for the negative effects of irrelevant Information on learning. Journal Educational Review, 30, 229-253.

Roos, L. E., Knight, E. L., Beauchamp, K. G., Berkman, E. T., Faraday, K., Hyslop, K., & Fisher, P. A. (2017). Acute stress impairs inhibitory control based on individual differences in parasympathetic nervous system activity. Biological Psychology, 125, 58–63.

Rudner, M., & Rönnberg, J. (2008). The role of episodic buffer in working memory for language processing. Cognitive Processing, 9(1), 19-28.

Sasaki, T. (2009). The role of the central executive in associative learning. Psychologia, 52, 80-90.

Schilling, C., Kühn, S., Paus, T., Romanowski, A., Banaschewski, T., Barbot, A., …., & the IMAGEN consortium (2013). Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Molecular Psychiatry, 18(5), 624-630.

Schurgin, M. W., Cunningham, C.A., Egeth, H. E., & Brady,T. F. (2018). Visual long-term memory can replace active maintenance in visual working memory. bioRxiv, 38184.

Shah, P., & Miyake, A. (1999). Models of working memory: An introduction. Dalam P. Shah, & A. Miyake, (Eds). Models of Working Memory (hal.1-27). Cambridge University Press.

Shing, Y. L., Lindenberger, U., Diamond, A., Li, S. C., & Davidson, M. C. (2010). Memory maintenance and inhibitory control differentiate from early childhood to adolescence. Developmental Neuropsychology, 35(6), 679–697.

Siebert, P. S., & Ellis, H. C. (1991). Irrelevant thoughts, emotional mood styles, and cognitive task performance. Memory & Cognition, 19, 507-513.

Simon, S. S., Tusch, E. S., Holcomb, P. J., & Daffner, K. R. (2016). Increasing working memory load reduces processing of cross-modal task-irrelevant stimuli even after controlling for task difficulty and executive capacity. Frontiers in Human Neuroscience, 10, 380.

Singh, K. A., Gignac, G. E., Brydges, C. R., & Ecker, U.K.H. (2018). Working memory capacity mediates the relationship between removal and fluid intelligence. Journal of Memory and Language, 101, 18-36.

Starr, D. A. (2011). Prefrontal-hippocampal pathways underlying inhibitory control over memory. Physiology & Behavior, 17(1), 139-148.

Strobel, B., Lindner, M.A., Saß, S., & Köller, O. (2018). Task-irrelevant data impair processing of graph reading tasks: An eye tracking study. Learning and Instruction, 55, 139-147., H. L. (2016). Word problem solving, working memory and serious math difficulties: Do cognitive strategies really make a difference? Journal of Applied Research in Memory and Cognition, 5(4), 368–383., H.L. (2015). Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities. Frontiers in Psychology, 6, 109., H. L., Lussier, C. M., & Orosco, M. J. (2013). Cognitive strategies, working memory, and growth in word problem solving in children with math difficulties. Journal of Learning Disabilities, 48(4), 339-358.

Swanson, H. L., Moran., A. S., Bocian., K., Lussier, C., & Zheng, X. (2012). Generative strategies, working memory and word problem solving accuracy in children at risk for math disabilities. Learning Disabilities Quarterly, 36(4), 202-214.

Tiego, J., Testa, R., Bellgrove, M. A., Pantelis, C., & Whittle, S. (2018). A hierarchical model of inhibitory control. Frontiers in Psychology, 9, 1339.

Toepper, M., Gebhardt, H., Bebio, T., Thomas, C., Driessen, M., Bischoff, M.,….& Sammer, G. (2010). Functional correlates of distractor suppression during spatial working memory encoding. Neuroscience, 165(4), 1244-1253.

Triplett, R. L., Velannova, K., Luna, B., Padmanathan, A., Gaillard, M. D., & Asato, M. R. (2014). Investigating inhibitory control in children with epilepsy: An fMRI study. Epilepsia, 55(10), 1667-1676.

Vara, A. S., Pang, E. W., Vidal, J., Anagnostou, E., & Taylor, M. J. (2014). Neural mechanisms of inhibitory control continue to mature in adolescence. Developmental Cognitive Neuroscience, 10, 129–139.

Valle,T. M., Gómez-Ariza, C. J., & Bajo, M.T. (2019). Inhibitory control during selective retrieval may hinder subsequent analogical thinking. PLoS One, 14(2), e0211881.

Veer, I. M., Luyten, H., Mulder, H., van Tuijl, C., & Sleegers, P. J. C. (2017). Selective attention relates to the development of executive functions in 2.5- to 3-year-olds: A longitudinal study. Early Childhood Research Quarterly, 41, 84–94.

Vellage, A. K., Becke, A., Strumpf, H., Baier, B., Schönfeld, M. A., Hopf, J. M., & Müller, N. G. (2016). Filtering and storage working memory networks in younger and older age. Brain and Behavior, 6(11), e00544.

Wais, P. E., & Gazzaley, A. (2011). The impact of auditory distraction on retrieval of visual memories. Psychonomic Bulletin & Review, 18(6), 1090-1097.

Waters, G., & Caplan, D. (2003). The reliability and stability of verbal working memory measures. Behavior Research Methods, Instruments & Computer, 35(4), 550-564.

Wei, P., Yu, H., Müller, H. J., Pollman, S., & Zhou, X. (2018). Differential brain mechanism for processing distracting information in task – relevant and irrelevant dimensions in visual search. Human Brain Mapping, 40(1), 110-124.

West, R., & Alain, C. (2000). Age‐related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179-189.

Wilcockson, T. D. W., Mardanbegi, D., Sawyer, P., Gellersen, H., Xia, B., & Crawford, T. J. (2019). Oculomotor and inhibitory control in dyslexia. Frontiers in Systems Neuroscience, 12, 66.

Wilhelm, O., Hildebrandt, A., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it? Frontiers in Psychology, 4, 433.

Woumans, E., Ameloot, S., Keuleers, E., & Van Assche, E. (2019). The relationship between second language acquisition and nonverbal cognitive abilities. Journal of Experimental Psychology: General, 148(7), 1169–1177.

Xu, K. S., Mayse, J. D., & Courtney, M. S. (2019). Evidence for selective adjustments of inhibitory control in variant of the stop signal task. Quarterly Journal of Experimental Psychology, 72(4), 818-831.

Yamagato, S., Yamaguchi, S., & Kobayashi, S. (2004). Impaired novelty processing in apathy after subcortical stroke. Stroke, 35(8), 1935-1940.

Yang, Z., & Tang, A. C. (2011). Novelty-induced enhancement in spatial memory: Is infancy critical period?. Behavioral Brain Research, 219(1), 47-54.

Yin, J., Zhou, J., Xu, H., Liang, J., Gao, Z., & Shen, M. (2012). Does high memory load kick task-irrelevant information out of visual working memory? Psychonomic Buletin & Review, 19, 218-224.

Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. Journal of Neuroscience, 29(10), 3059-3066.

Zeinti, M., & Kliegel, M. (2007). The role of inhibitory control in age – related operation span performance. European Journal of Ageing, 4(4), 213-217.

Zelazo, P. D., & Lee, W. S. C. (2010). Brain development: An overview. Dalam R. M. Lerner & W. F. Overton (Eds.), The Handbook of Life-span development, volume 1: Cognition, biology, and methods, (hal.89-114). Wiley.

Zhang, L., Yu, S., Li, B., & Wang, J. (2017). Can students identity the relevant information to solve the problem?. Journal of Educational Technology & Society, 20(4), 288-299.

Zhao, X., Chen, L., & Maos, J. H. R. (2016). Training and transfer effect of response inhibition training in children and adults. Development Science, 21(1), e12511.


  • There are currently no refbacks.

Copyright (c) 2021 Buletin Psikologi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.