Gut dysbiosis and the role of probiotics in chronic kidney disease

https://doi.org/10.19106/JMedSci005503202309

Alius Cahyadi(1*), Angelina Yuwono(2), Stephanie Widodo Subagio(3), Maria Riastuti Iryaningrum(4)

(1) Department of Internal Medicine, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
(2) Department of Internal Medicine, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
(3) Department of Internal Medicine, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
(4) Department of Internal Medicine, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia
(*) Corresponding Author

Abstract


Chronic inflammatory condition in chronic kidney disease (CKD) patients is associated with increased risk of cardiovascular morbidity and mortality. Gut dysbiosis is assumed as one of leading factors to the chronic inflammatory condition. The relationship between the kidney and the gastrointestinal, knowns as the gut-kidney axis, has a role in production and accumulation of uremic toxins derived from gut microbial fermentation of protein, and translocation of endotoxins and microbial from gut lumen into bloodstream due to alterations of intestinal epithelial barrier in CKD patients. Probiotics supplementation is one of the optional theraphy to restore the gut dysbiosis in CKD patients. Recent studies found that probiotics supplementation in CKD patients decreased uremic toxins and pro-inflammatory cytokines production, and delayed CKD progression. The improvement of this chronic inflammatory condition is expected to decrease cardiovascular disease risk in CKD patients. This review aims to describe the importance of gut-kidney axis in CKD patients, particularly in gut dysbiosis, and the role of probiotics in progression of CKD.


Keywords


gut dysbiosis, chronic kidney disease; probiotics; gut-kidney axis

Full Text:

PDF


References

Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasseson DS, et al. Global prevalence of chronic kidney disease-A systematic review and meta-analysis. PLoS One 2016; 11(7):e0158765.
https://doi.org/10.1371/journal.pone.0158765
2.Di Lullo L, House A, Gorini A, Santoboni A, Russo D, Ronco C. Chronic kidney disease and cardiovascular complications. Heart Fail Rev 2015; 20(3):259-72.
https://doi.org/10.1007/s10741-014-9460-9
3.Sabatino A, Regolisti G, Brusasco I, Cabassi A, Morabito S, Fiaccadori E, et al. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 2015; 30(6):924-33.
https://doi.org/10.1093/ndt/gfu287
4.Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 2021; 43(11):1157-72.
https://doi.org/10.1161/CIRCULATIONAHA.120.050686
5.Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int 2013; 83(6):1010-6.
https://doi.org/10.1038/ki.2012.440
6.Guldris SC, Parra EG, Amenos AC. Gut microbiota in chronic kidney disease. Nefrología 2017; 37(1):9-19.
https://doi.org/10.1016/j.nefro.2016.05.008
7.Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am J Nephrol 2013; 37(1):1-6.
https://doi.org/ 10.1159/000345969
8.Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar Vr S, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol 2017; 28(1):76-83.
https://doi.org/10.1681/ASN.2015111285
9.Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7(1):14.
https://doi.org/10.3390/microorganisms7010014
10.Cerf-Bensussan N, Eberl G. The dialog between microbiota and the immune system: Shaping the partners through development and evolution. Semin Immunol 2012; 24(1):1-2.
https://doi.org/10.1016/j.smim.2011.11.007
11.Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 2014; 39(3):230-7.
https://doi.org/10.1159/000360010
12.Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 2014; 25(4):657-70.
https://doi.org/10.1681/ASN.2013080905
13.Vitetta L, Llewellyn H, Oldfield D. Gut dysbiosis and the intestinal microbiome: streptococcus thermophilus a key probiotic for reducing uremia. Microorganisms 2019; 7(8):228.
https://doi.org/10.3390/microorganisms7080228
14.Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol 2018; 9:2013.
https://doi.org/10.3389/fmicb.2018.02013
15.Vaziri ND. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 2012; 21(6):587-92.
https://doi.org/10.1097/MNH.0b013e328358c8d5
16.Geuking MB, McCoy KD, Macpherson AJ. The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism. Semin Immunol 2012; 24(1):36-42.
https://doi.org/10.1016/j.smim.2011.11.005
17.Swiatczak B, Rescigno M. How the interplay between antigen presenting cells and microbiota tunes host immune responses in the gut. Semin Immunol 2012; 24(1):43-49.
https://doi.org/10.1016/j.smim.2011.11.004
18.Krishnamurthy VMR, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 2012; 81(3):300-6.
https://doi.org/10.1038/ki.2011.355
19.Mafra D, Barros AF, Fouque D. Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Future Microbiol 2013; 8(10):1317-23.
https://doi.org/10.2217/fmb.13.103
20.Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 2016; 12(3):169-81.
https://doi.org/10.1038/nrneph.2015.191
21.Shi K, Wang F, Jiang H, Liu H, Wei M, Wang Z, et al. Gut Bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci 2014; 59(9):2109-17.
https://doi.org/10.1007/s10620-014-3202-7
22.Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis 2016; 67(3):483-98.
https://doi.org/10.1053/j.ajkd.2015.09.027
23.Aoki K, Teshima Y, Kondo H, Saito A, Fukui A, Fukunaga N, et al. Role of indoxyl sulfate as a predisposing factor for atrial fibrillation in renal dysfunction. J Am Heart Assoc 2015; 4(10):e002023.
https://doi.org/10.1161/JAHA.115.002023
24.Gross P, Massy ZA, Henaut L, Boudot C, Cagnard J, March C, et al. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J Cell Physiol 2015; 230(12):2927-35.
https://doi.org/10.1002/jcp.25018
25.Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, Claes K, et al. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol 2014; 15(1):87.
https://doi.org/10.1186/1471-2369-15-87
26.Lin CJ, Wu V, Wu PC, Wu CJ. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS One 2015; 10(7):e0132589.
https://doi.org/10.1371/journal.pone.0132589
27.Nangaku M, Mimura I, Yamaguchi J, Higashijima Y, Wada T, Tanaka T. Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients. J Ren Nutr 2015; 25(2):160-3.
https://doi.org/10.1053/j.jrn.2014.10.011
28.Ahmed MSE, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 2013; 14:244.
https://doi.org/10.1186/1471-2369-14-244
29.Lin CJ, Pan CF, Chuang CK, Liu HL, Sun FJ, Wang TJ, et al. Association of indoxyl sulfate with fibroblast growth factor 23 in patients with advanced chronic kidney disease. Am J Med Sci 2014; 347(5):370-6.
https://doi.org/10.1097/MAJ.0b013e3182989f26
30.Nakano C, Hamano T, Fujii N, Obi Y, Matsui I, Tomida K, et al. Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone 2012; 50(6):1266-74.
https://doi.org/10.1016/j.bone.2012.02.634
31.Rossi M, Johnson DW, Xu H, Carrero JJ, Pascoe E, French C, et al. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr Metab Cardiovasc Dis 2015; 25(9):860-5.
https://doi.org/10.1016/j.numecd.2015.03.015
32.Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 2014; 9(9):1603-10.
https://doi.org/10.2215/CJN.00490114
33.Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirici ML, Tartaglia D, et al. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif 2013; 35(1-3):196-201.
https://doi.org/10.1159/000346628
34.Di Iorio B, Di Micco L, Torraca S, Sirico ML, Russo L, Pota A, et al. Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin J Am Soc Nephrol 2012; 7(4):581-7.
https://doi.org/10.2215/CJN.07640711
35.Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int 2015; 88(5):958-66.
https://doi.org/10.1038/ki.2015.255
36.Guida B, Germanò R, Trio R, Russo D, Memoli B, Grumetto L, et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: A randomized clinical trial. Nut Metab Cardiovasc Dis 2014; 24(9):1043-9.
https://doi.org/10.1016/j.numecd.2014.04.007
37.Wang IK, Wu YY, Yang YF, Ting IW, Lin CC, Yen TH, et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes 2015; 6(4):423-30.
https://doi.org/10.3920/BM2014.0088
38.Jia L, Jia Q, Yang J, Jia R, Zhang H. Efficacy of probiotics supplementation on chronic kidney disease: a systematic review and meta-analysis. Kidney Blood Press Res 2018; 43(5):1623-35.
https://doi.org/10.1159/000494677
39.Brufau MT, Campo-Sabariz J, Carné S, Ferrer R, Martín-Venegas R. Salmosan, a β-galactomannan-rich product, in combination with Lactobacillus plantarum contributes to restore intestinal epithelial barrier function by modulation of cytokine production. J Nutr Biochem 2017; 41:20-4.
https://doi.org/10.1016/j.jnutbio.2016.11.011
40.Fagundes RAB, Soder TF, Grokoski KC, Benetti F, Mendes RH. Probiotics in the treatment of chronic kidney disease: a systematic review. J Braz Nephrol 2018; 40(3):278-86.
https://doi.org/10.1590/2175-8239-jbn-3931
41.Cruz-Mora J, Martínez-Hernández NE, Martín del Campo-López F, Viramontes-Hörner D, Vizmanos-Lamotte B, Muñoz-Valle JF, et al. Effects of a symbiotic on gut microbiota in mexican patients with end-stage renal disease. J Ren Nutr 2014; 24(5):330-5.
https://doi.org/10.1053/j.jrn.2014.05.006



DOI: https://doi.org/10.19106/JMedSci005503202309

Article Metrics

Abstract views : 1239 | views : 1234




Copyright (c) 2023 Alius Cahyadi, Angelina Yuwono, Stephanie Widodo Subagio, Maria Riastuti Iryaningrum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.