Comparison of high-intensity and low-level laser therapy effecton combined sensory index, sensory conduction velocity and distal motoric latency: a study in moderate carpal tunnel syndrome patients

Nelson Sudiyono(1*), Rudy Handoyo(2)

(1) Resident of Physical Medicine and Rehabilitation Study Program, Medical Faculty of Universitas Diponegoro, Semarang, Department of Physiology, School of Medicine and Health Science, Atma Jaya Catholic University of Indonesia, Jakarta,
(2) Department of Physical Medicine and Rehabilitation, Medical Faculty of Universitas Diponegoro, Semarang, Indonesia
(*) Corresponding Author


Carpal tunnel syndrome (CTS) is the most common neuropathy compression syndrome. The effectiveness of low-level laser therapy (LLLT) as one of the conservative therapy for CTS is still debatable. High-intensity laser therapy (HILT) is developed with higher energy and deeper tissue penetration than LLLT. This study aimed to compare the effect of HILT and LLLT on sensory and motoric electrophysiologic parameters in moderate CTS patients. This was an experimental randomized pre and post-test group study. Sixteen patients (fifteen females and one male) with moderate CTS were randomly assigned into two groups. The HILT group was given HILT with analgesic dosage 10 J/cm2 and biostimulation dosage 120 J/cm2. The LLLT group was given LLLT with dosage 6 J/cm2. All treatments were given for ten sessions in 2 weeks. Combined sensory index (CSI), sensory nerve conduction velocity (SNCV), and distal motoric latency (DML) were recorded before and three days after the last treatment. The mean decrease of CSI was more significant in HILT group (-0.37±0.37 ms; p=0.03). There were no significant differences in the mean increase of SNCV (HILT = 3.16±3.15 m/s, LLLT= 2.74±1.42 m/s; p=0.73) and mean decrease in DML between two groups (HILT = - 0.20 ± 0.18 ms , LLLT = - 0.14 ± 0.21 ms; p=0.52). In conclusion, the HILT is more effective than LLLT in improving the CSI values in moderate CTS patients.


CTS; electrophysiologic; HILT; LLLT

Full Text:



  1. Zhao M, Burke D. Median neuropathy (carpal tunnel syndrome). In: Frontera W, Silver J, editors. Essentials of physical medicine and rehabilitation. 3rd ed. Philadelphia: Elsevier; 2015, 174-9.
  2. Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999; 282(2):153-8.
  3. Mondelli M, Giannini F, Giacchi M. Carpal tunnel syndrome incidence in a general population. Neurology 2002; 58:289-94.
  4. Tana L, Halim F, Delima, Ryadina W. Carpal tunnel syndrome pada pekerja garmen di Jakarta. Bul Penel Kesehat 2004; 32(2):78-82.
  5. Pangestuti A, Widajati N. Faktor yang berhubungan dengan keluhan carpal tunnel syndrome pada pekerja gerinda di PT Dok dan Perkapalan Surabaya. Indones J Occup Saf Health. 2014; 3(1):14-24.
  6. Kurniawan B, Jayanti S, Setyaningsih Y. Faktor risiko kejadian carpal tunnel syndrome pada wanita pemetik melati di Desa Karangcengis, Purbalingga. J Promosi Kesehat Indones 2008; 3(1):31-7.
  7. Bland J. A neurophysiological grading scale for carpal tunnel syndrome. Muscle Nerve 2000; 23:1280-3.<1280::AID-MUS20>3.0.CO;2-Y
  8. Brault J. Conservative care for carpal tunnel syndrome. In: Luchetti R, Amadio P, editors. Carpal tunnel syndrome. New York: Springer; 2007, p. 105-10.
  9. Rochkind S, Geuna S, Shainberg A. Phototherapy in peripheral nerve injury: effects on muscle preservation and nerve regeneration. Int Rev Neurobiol 2009; 87:445-64.
  10. Prouza O, Jenicek J, Prochazka M. Class 4 Non-invasive laser therapy in clinical rehabilitation. Rehabil Fyz Lek 2013; 20(2):113-9.
  11. Pryor BA. Class IV laser therapy: interventional and case reports confirm positive therapeutic outcomes in multiple clinical indications. Lite Cure, LLC; 2009.
  12. Khalid M. Mechanism of laser/light beam interaction at cellular and tissue level and study of the influential factors for the application of low-level laser therapy. ArXiv Prepr ArXiv. 2016; 1606.04800.
  13. Cameron M. Physical agents in rehabilitation: from research to practice. 4th ed. Missouri: Elsevier; 2013, p.283-306.
  14. Hamblin M, Demidova T. Mechanisms of low-level light therapy. Proc SPIE. 6140:1-8.
  15. Bekhet A, Ragab B, Abushouk A, Elgebaly A, Ali O. Efficacy of low-level laser therapy in carpal tunnel syndrome management: a systematic review and meta-analysis. Laser Med Sci 2017; 32(6):1439-48.
  16. Mester A. Laser biostimulation. Photomed Laser Surg 2013; 31(6):237-8.
  17. Mondardini P. High-intensity laser therapy (hilt): State of the art in sporting traumatology and pain therapy [Internet]. American health lasers; [cited 2018 Mar 18] p. 47-55. Available from:
  18. Luchetti R. Etiopathogenesis. In: Luchetti R, Amadio P, editors. Carpal tunnel syndrome. New York: Springer; 2007, p. 21-7.
  19. Lidia D, Condreanu T, Murgu A, Marinescu L. The possible side effects of high-intensity laser. Palestrica Third Millenn-Civiliz Sport, 2015; 16(3):219-22.
  20. Carpal tunnel syndrome-analgesia & biostimulation. In: BTL-6000 High intensity laser 12W, 1064nm, BTL therapeutic encyclopedia, BTL; 2014. p.17-8.
  21. Rayegani S, Bahramil M, Eliaspourl D, Raeissadat S, Samakooshl M, Sedihgipour L, et al. The effects of low-intensity laser on clinical and electrophysiological parameters of carpal tunnel syndrome. J Lasers Med Sci, 2013; 4(4):182-9.
  22. WALT. Recommended treatment doses for low-level laser therapy. WALT; 2010.
  23. van Rijn R, Huisstede B, Koes B, Burdorf A. Associations between work-related factors and the carpal tunnel syndrome: A systematic review. Scand J Work Env Health 2009; 35:19-36.
  24. Werner R, Andray M. AANEM Monograph: Electrodiagnostic evaluation of carpal tunnel syndrome. Muscle Nerve 2011; 44:597-607.
  25. Sastroasmoro S, Ismael S. Dasar-dasar metodologi penelitian klinis. Jakarta: Sagung Seto; 2011.
  26. Dahlan M. Statistik untuk kedokteran dan kesehatan. 5th ed. Jakarta: Salemba Medika; 2011.
  27. Van Breugel H, Bar P. He-Ne laser irradiation affects proliferation of cultured rat schwann cells in a dose-dependent manner. J Neurocytol 1993; 22(3):185-90.
  28. Casale R, Damiani C, Maestri R, Wells C. Pain and electrophysiological parameters are improved by combined 830-1064 high-intensity LASER in symptomatic carpal tunnel syndrome versus transcutaneous electrical nerve stimulation. Eur J Phys Rehabil Med 2013; 49(2):205-11.
  29. Robinson L, Micklesen P. Strategies for analyzing nerve conduction data: Superiority of a summary index over single tests. Muscle Nerve 1998; 21(9):1166-71.<1166::AID-MUS7>3.0.CO;2-5
  30. Aufiero E, Stitik T, Foye P, Chen B. Pyridoxine hydrochloride treatment of carpal tunnel syndrome: A review. Nutr Rev 2004; 62(3):96-104.
  31. Preston D, Shapiro B. Median nerve neuropathy at the wrist. In: Electromyography and neuromuscular disorders: Clinical-electrophysiologic correlations. 3rd ed. New York: Elsevier; 2013. p. 267-88.
  32. Gupta R, Nassiri N, Hazel A, Bathen M, Mozaffar T. Chronic nerve compression alters schwann cell myelin architecture in a murine model. Muscle Nerve 2012; 45(2):231-41.
  33. Stassart R, Fledrich R, Velanac V, Brinkmann B, Schwab M, Meijer D, et al. A role for schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 2013; 16:48-54.
  34. Sherman D, Brophy P. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 2005; 6(9):683-90.
  35. Sunderland S. Nerve and nerve injuries. New York: Churchill Livingstone; 1978. p.15.


Article Metrics

Abstract views : 2655 | views : 4900

Copyright (c) 2020 Nelson Sudiyono, Rudy Handoyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats


Creative Commons License
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by  Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at