Extended spectrum beta lactamase (ESBL)-producing Klebsiella pneumoniae clinical isolates and its susceptibility pattern to antibiotics at Dr. Soeradji Tirtonegoro General Hospital Klaten, Central Java

https://doi.org/10.19106/JMedSci005201202003

Kian Sinanjung(1), Hera Nirwati(2*), Abu Tholib Aman(3)

(1) Resident of Clinical Microbiology, Faculty of Medicine, Public Health, and Nursing Universitas Gadjah Mada
(2) Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Globally, the prevalence of Klebsiella pneumoniae (K. pneumonia) producing extended spectrum beta lactamase (ESBL) has been increasing steadily. The susceptibility patterns of ESBL-producing K. pneumonia varies considerably among countries. Therefore, the investigation of ESBL-producing K. pneumoniae in clinical isolates and their susceptibility are warranted. This research aimed to determine the proportion of ESBL-producing K. pneumoniae and the antibiotic susceptibility patterns of clinical isolates from Dr. Soeradji Tirtonegoro General Hospital, Klaten, Central Java. Identification of K. pneumoniae was performed by analyzing colony morphology, microscopic examination, and biochemical testing using Microbact. Both antibiotic susceptibility testing and ESBL screening (using ceftazidime, cefotaxime, and ceftriaxone discs) were conducted using disc diffusion method according to CLSI. The positive results were confirmed with modified double disk synergy (MDDST) using amoxicillin-clavulanate, ceftazidime, cefotaxime, and cefepime discs. From 962 clinical bacterial isolates, 168 (17.46%) isolates were identified as K. pneumoniae, during June 2017-May 2018. K. pneumoniae was mainly isolated from the Intensive Care Units (ICU) (29.17%) and with sputum being the most common specimen (45.24%). Overall ESBL producers were 52.98%, with the majority from ICU (41.57%) and isolated from sputum specimens (40.45%). ESBL-producing K. pneumoniae showed high resistance to many antibiotics. The sensitivity of ESBL-producing K. pneumoniae isolated from respiratory tract samples against piperacillin-tazobactam, amikacin, and meropenem was more than 80%. In conclusion, among all K. pneumoniae isolates, ESBL K. pneumoniae was 52.98%. ESBL K. pneumoniae from respiratory tract specimens had a sensitivity of more than 80% against piperacillin-tazobactam, amikacin, and meropenem.


Keywords


Klebsiella pneumonia; extended spectrum beta lactamase; modified double disk synergy; antibiotic resistance; susceptibility testing;

Full Text:

PDF


References

  1. Ahmad N, Drew W, Lagunoff M, Pottinger P, Reller L, Sterling C. Sherris medical microbiology. Ryan J, Ray C, editors, 6th Ed. New York: Mc Graw-Hill, 2014.
  2. Woldu MA. Klebsiella pneumoniae and its growing concern in healthcare settings. Clin Exp Pharmacol 2016; 6(1): 1-7.
  3. Tsai S, Huang J, Chen S, Hsu BR, Lin J, Huang S. Characteristics of Klebsiella pneumoniae bacteremia in community acquired and nosocomial Infections in diabetic patients. Chang Gung Med J 2010; 33(5): 532-9.
  4. Harvey RA, Cornelissen CN, Fisher BD. Gastrointestinal gram negative rods. In: Lippincott’s Ilustrated Reviews Microbiology, 3rd Ed., Philadelphia. Lippincott: Williams& Wilkins, 2013; 617.
  5. Tille PM. Gram-negative bacilli and coccobacilli (macconkey-Positive, Oxidase-Negative) In: Bailey & Scott’s Diagnostic Microbiology, 13th Ed. St Louis: Elsevier Mosby, 2014; 312.
  6. De Jesus MB, Ehlers MM, Santos RF Dos, Kock MM. World’ s largest Science, technology & medicine open access book publisher review-understanding β lactamase producing Klebsiella pneumoniae. Intech Open 2015; 51-69. https://doi.org/10.5772/61852
  7. Perez F, Endimiani A, Hujer KM, Bonomo RA. The continuing challenge of ESBLs. Curr Opin Pharmacol 2007; (7): p. 459-69. https://doi.org/10.1016/j.coph.2007.08.003
  8. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006; 34(5 SUPPL): 20-8. https://doi.org/10.1016/j.ajic.2006.05.238
  9. Zhang X, Reinert RR, Low DE, Wattal C, Dowzicky MJ. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 2007; 60(9): 1018-29. https://doi.org/10.1093/jac/dkm310
  10. Zhang J, Zhou K, Zheng B, Zhao L, Shen P, Ji J. High prevalence of ESBL-producing Klebsiella pneumoniae causing community-onset Infections in collection of clinical Isolates. Front Microbiol 2016; 7(11): 1-10. https://doi.org/10.3389/fmicb.2016.01830
  11. Ashrafian F, Askari E, Kalamatizade E, Javad M, Shahroodi G, Naderi-Nasab M. The frequency of Extended Spectrum Beta Lactamase (ESBL) in Escherichia coli and Klebsiella pneumoniae: a report from Mashhad, Iran. J Med Bacteriol 2013; 2(2): 12-1912.
  12. Mshana SE, Kamugisha E, Mirambo M, Chakraborty T, Lyamuya EF. Prevalence of multiresistant gram-negative organisms in a tertiary hospital in Mwanza, Tanzania. BMC Res Notes 2009 ;2: 1-6. https://doi.org/10.1186/1756-0500-2-49
  13. Kuntaman, Mertaniasih NM, Hadi U. Multiresistance pattern of Extended Spectrum Beta Lactamase (ESBL) Eschericia coli and Klebsiella pneumoniae strains. Folia Med Indonesiana 2006; 42(1): 40-46.
  14. Hadi U, Qibtiyah M, Paraton H. Problem of antibiotic use and antimicrobial resistance in Indonesia: are we really making progress ? Indones J Trop Infect Dis 2013; 4(4): 5-8. https://doi.org/10.20473/ijtid.v4i4.222
  15. Fitri NN, Rusli M, Wahyunitisari MR. Antibiotic use is not a risk factor of infections by Extended Spectrum Beta Lactamase producing bacteria in Dr Soetomo Hospital Surabaya. Microbiol Indones 2015; 9(4): 150-6. https://doi.org/10.5454/mi.9.4.2
  16. Anggraini D, S UH, Savira M, D FA, Irawan D, R RP. Prevalensi dan pola sensitivitas Enterobacteriaceae penghasil ESBL di RSUD Arifin Achmad Pekanbaru. J Kedokt Brawijaya 2018; 30(1): 47-52. https://doi.org/10.21776/ub.jkb.2018.030.01.9
  17. Warganegara E, Apriliana E. The determining type of Extended-Spectrum β Lactamase Enzyme (ESBL) from Escherichia coli resistance cephalosporine of third generation in RSUD Abdoel Moeloek Bandar Lampung. J Kedokt Fak Kedokt Univ Lampung 2014; 4(7): 87-96.
  18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. CLSI document M100. 28th Ed. Wayne, PA: Clinical and Laboratory Standards Institute, 2018. 224.
  19. Garrec H, Drieux-Rouzet L, Golmard JL, Jarlier V, Robert J. Comparison of nine phenotypic methods for detection of Extended-Spectrum β-Lactamase production by Enterobacteriaceae. J Clin Microbiol 2011; 49(3): 1048-57. https://doi.org/10.1128/JCM.02130-10
  20. Kaur J, Chopra S, Sheevani, Mahajan G. Modified double disc synergy test to detect ESBL production in urinary isolates of Escherichia coli and Klebsiella pneumoniae. J Clin Diagnostic Res 2013; 7(2): 229-33. https://doi.org/10.7860/JCDR/2013/4619.2734
  21. Mahon C, Lehman DC, Manuselis G. Laboratory Identification of Significant Isolates. In: Wurm-Cutter E, editor. Textbook of Diagnostic Microbiology. 5th Ed. Maryland Heights: Sauders Elsevier, 2015. 428-9.
  22. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998; 11 (4): 589-603. https://doi.org/10.1128/CMR.11.4.589
  23. Paterson DL, Bonomo RA. Extended Spectrum β Lactamases: a clinical update. Clin Microbiol Rev 2005; 18(4): 657-86. https://doi.org/10.1128/CMR.18.4.657-686.2005
  24. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended Spectrum β Lactamase producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001; 32(3): 1162-71. https://doi.org/10.1086/319757
  25. Broberg CA, Palacios M, Miller VL. Klebsiella : a long way to go towards understanding this enigmatic jet-setter. F1000 prime Reports 2014; 12(8): 1-12. https://doi.org/10.12703/P6-64
  26. Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum β Lactamases : definition, classification and epidemiology. Curr Issues Mol Biol 2015; 17: 11-22.
  27. Diab AM, Abul-Aziz MH, El-Kholy IMA, Rezk MA. Modified Double Disc Synergy Test (MDDST) versus Double Disc Synergy Test (DDST) for detection of ESBL(S) in Ampc Β-Lactamase producing Klebsiella clinical isolates. Eur Chem Bull 2018; 7(2): 89. https://doi.org/10.17628/ecb.2018.7.89-92
  28. Black JA, Moland ES, Thomson KS. AmpC disc test for detection of plasmid mediated AmpC β Lactamases in Enterobacteriaceae lacking chromosomal AmpC β Lactamases. J Clin Microbiol 2005; 43(7): 3110-13. https://doi.org/10.1128/JCM.43.7.3110-3113.2005
  29. Rawat D, Nair D. Extended Spectrum ß Lactamases in gram negative bacteria. J Global Infec Dis 2010; 2(3): 263. https://doi.org/10.4103/0974-777X.68531
  30. Kementrian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 8 tahun 2015 tentang Program Pengendalian Resistensi Antimiroba di Rumah Sakit. Jakarta, 2015.
  31. Kuntaman K, Santoso S, Wahjono H, Mertaniasih NM, Lestari ES, Farida H. The Sensitivity Pattern of Extended Spectrum β Lactamase-Producing bacteria against six antibiotics that routinely used in clinical setting. J Indones Med Assoc 2011; 61(12): 482-6.
  32. Kementrian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 240 tahun 2011 tentang Pedoman Umum Penggunaan Antibiotik. Jakarta, 2011.
  33. Warren RE, Harvey G, Carr R, Ward D, Doroshenko A. Control of infections due to Extended Spectrum β lactamase producing organisms in hospitals and the community. Clin Microbiol Infect 2008; 14(SUPPL. 1): 124-33. https://doi.org/10.1111/j.1469-0691.2007.01870.x
  34. Clinical and Laboratory Standards Institute. Analysis and presentation of cumulative antimicrobial susceptibility test data. CLSI document M39A-A2, 2nd Ed. Reston, VA: Clinical and Laboratory Standards Institute; 2005.
  35. Harris PNA, Yin M, Jureen R, Chew J, Ali J, Paynter S. Comparable outcomes for β lactam/β lactamase inhibitor combinations and carbapenems in definitive treatment of bloodstream infections caused by cefotaxime-resistant Escherichia coli or Klebsiella pneumoniae. Antimicrob Resist Infect Control 2015; 4(14): 1-10. https://doi.org/10.1186/s13756-015-0055-6



DOI: https://doi.org/10.19106/JMedSci005201202003

Article Metrics

Abstract views : 4038 | views : 3648




Copyright (c) 2019 Kian Sinanjung, Hera Nirwati, Abu Tholib Aman

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.