Antibiotic resistance of biofilm-producing bacteria from sepsis patients in Prof. Dr. Margono Soekarjo Hospital, Purwokerto, Central Java

https://doi.org/10.19106/JMedSci005402202207

Rani Afifah Nur Hestiyani(1*), Wahyu Siswandari(2), Vitasari Indriani(3), I Dewa Sang Ayu Putu Peramiarti(4), Dwi Utami Anjarwati(5), Hermin Prihartini(6)

(1) Department of Microbiology, Faculty of Medicine, Universitas Jenderal Soedirman,
(2) Department of Clinical Pathology, Faculty of Medicine, Universitas Jenderal Soedirman
(3) Department of Clinical Pathology, Faculty of Medicine, Universitas Jenderal Soedirman
(4) Department of Microbiology, Faculty of Medicine, Universitas Jenderal Soedirman,
(5) Department of Microbiology, Faculty of Medicine, Universitas Jenderal Soedirman,
(6) Department of Anesthesiology and Intensive Therapy, Prof. Dr. Margono Soekarjo General Hospital, Purwokerto, Central Java, Indonesia
(*) Corresponding Author

Abstract


Sepsis is a life-threatening organ dysfunction induced by the body's response to infection and is a significant cause of critical illness and death in hospitals. Bacteria are the most common pathogens that cause sepsis, and their ability to form biofilms increases their resistance to antibiotics. As a result of the failure of antibiotic administration therapy, the severity and pain of sepsis worsen. The study used a descriptive research design to determine the antibiotic resistance pattern of biofilm-producing bacteria from clinical isolates of sepsis patients. Using the BacT/Blood Culture System Alert, all patients suspected of sepsis in the intensive care unit of Prof. Dr. Margono Soekarjo General Hospital Purwokerto were examined for blood cultures between March and July 2018. These were then identified and tested for antibiotic resistance with the Vitek 2 Compact. Biofilm formation was detected utilizing the microtiter plate assay method, and the data were analyzed using a frequency distribution table. The results obtained 12 bacterial isolates, with Escherichia coli (41.67%), Staphylococcus haemolyticus (33.33%), Klebsiella pneumoniae ssp pneumoniaeEnterobacter cloacae complex, and Acinetobacter baumannii complex (8.33%) as the most common bacteria. All gram-negative bacteria (more than 80%) were resistant to ampicillin, cefoxitin, ceftazidime, ceftriaxone, aztreonam, and trimethoprim but were sensitive to meropenem (100%). Gram-positive bacteria were resistant to cefoxitin, benzylpenicillin, oxacillin, ciprofloxacin, erythromycin, and clindamycin (100% each). However, they were sensitive to tigecycline, nitrofuran, quinupristin, linezolid, vancomycin, and tetracycline (100% each). Gram-negative bacteria formed 50% biofilms, and 50% did not, whereas gram-positive bacteria produced 100% biofilms. In conclusion, bacteria clinical isolates of septic patients from Prof. Dr. Margono Soekarjo General Hospital Purwokerto are multiresistant to more than six types of antibiotics and produce weak to moderate biofilms, which can promote antibiotic resistance.


Keywords


bacteria; biofilm; antibiotic resistance; sepsis; epidemiology

Full Text:

PDF


References

Dugar S, Chiraj C, Abhijit D. Sepsis and septic shock: guideline-based management. Cleve Clin J Med 2020; 87(1):53-64.
https://doi.org/10.3949/ccjm.87a.18143
2.Makic MBF, Bridged E. Managing sepsis and septic shock: current guidelines and definition. Am J Nurs 2018; 118(2):34-9.
https://doi.org/10.1097/01.NAJ.0000530223.33211.f5
3.Tambajong RN, Diana CL, Lucky K. Profil penderita sepsis di ICU RSUP Prof. Dr. R. D. Kandau Manado periode Desember 2014-November 2015. Jurnal e-Clinic (eCl). 2016; 4: 1.
4.Zanon F, Caovilla JJ, Michel RS, Cabeda EV, Ceretta DF, Luckemeyer GD, et al. Sepsis in the intensive care unit: etiologies, prognostic factors, and mortality. Rev Bras Ter Intensiva 2008; 20(2):128-34.
5.Singer M, Deutschman CS, Seymour CW, Shanker-hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016; 315(8):801-10.
https://doi.org/10.1001/jama.2016.0287
6.Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ 2016; 353:1585.
https://doi.org/10.1136/bmj.i1585
7.Hall MJ, Sonja NW, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients in hospitals. NCHS Data Brief 2011; 62:1-8.
8.Alebachew G, Teka B, Endris M, Shiferaw Y, Tessema B. Etiologic agents of bacterial sepsis and their antibiotic susceptibility patterns among patients living with human immunodeficiency virus at gondar university teaching hospital, northwest ethiopia. Biomed Res Int 2016; 2016:5371875.
https://doi.org/10.1155/2016/5371875
9.Oyong N, Dewi A, Karina. Pola resistensi bakteri penyebab sepsis neonatorum di instalasi perawatan neonatus RSUD Arifin Riau. Sari Pediatri 2016; 17(6):435-40.
http://dx.doi.org/10.14238/sp17.6.2016.435-40
10.Mahendra AD, Tirtodiharjo K, Kusuma ITD. The pattern of bacteria and its resistance on adult sepsis patient at Dr. Moewardi Geeneral Hospital, Indonesia. Arch Clin Microbiol 2016; 7(5):28.
https://doi.org/10.4172/1989-8436.100058
11.Lewis MT, Biedenbach DJ, Jones RN. In vitro evaluation of cefepime and other broad-spectrum beta-lactams against bacteria from Indonesian medical centers the Indonesia Antimicrobial Resistance Study Group. Diagn Microbiol Infect Dis 1999; 35(4):285-90.
https://doi.org/10.1016/s0732-8893(99)00099-1
12.Radji M, Fauziah S, Aribinuko N. Antibiotic sensitivity pattern of bacterial pathogens in the intensive care unit of Fatmawati Hospital, Indonesia. Asian Pac J Trop Biomed 2011; 1(1):39-42.
https://doi.org/10.1016/S2221-1691(11)60065-8
13.Afifah, Tunggul AP, Peramiarti IDSAP. Resistensi Klebsiella sp. terhadap meropenem di RSUD Prof. Dr. Margono Soekarjo Purwokerto. Scripta Biologica 2017; 4(2):135-7.
https://doi.org.10.20884/1.sb.2017.4.2.378
14.Moghadam SO, Pourmand MR, Aminharati F. Biofilm formation and antimicrobial resistance in methicillin-resistant Staphylococcus aureus isolated from burn patients, Iran. J Infect Dev Ctries 2014; 8(12):1511-7.
https://doi.org/10.3855/jidc.5514
15.Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003; 2(2):114-22.
https://doi.org/10.1038/nrd1008
16.Anjarwati DU, Siswandari W, Peramiarti IDSAP. Profile of biofilm-producing Staphylococcus epidermidis from intravenous catheter colonisation at Prof. Dr. Margono Soekarjo Hospital Purwokerto. Indonesian Journal of Pharmacy 2019; 30(1):1-6.
http://dx.doi.org/10.14499/indonesianjpharm30iss1pp1
17.Abebe GM. The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbiol 2020; 1705814.
https://doi.org/10.1155/2020/1705814
18.Limmathurotsakul D. Causes and outcomes of sepsis in Southeast Asia: a multinational multicentre cross-sectional study. Lancet Glob Health 2017; 5(2):e157-67.
https://doi.org/10.1016/S2214-109X(17)30007-4
19.Hidayati, Arifin H, Raveinal. Kajian penggunaan antibiotik pada pasien sepsis dengan gangguan ginjal. Jurnal Sains Farmasi dan Klinik 2016; 2(2):129-37.
https://doi.org/10.29208/jsfk.2016.2.2.75
20.Kumalo A, Kassa T, Mariam ZS, Daka D, Tadesse AH. Bacterial profile of adult sepsis and their antimicrobial susceptibility pattern at Jimma University specialized hospital, South West Ethiopia. Health Science Journal 2016; 10(2):1-8.
21.Karunakaran R, Raja NS, Ng KP, Navaratnam P. Etology of bloodculture isolates among patents in a multdisciplinary teaching hospital in Kuala Lumpur. J Microbiol Immunol Infect 2007; 40(5):432-7.
22.Piete A, Verschraegen G. Role of Coagulase-negatve Staphylococci in human disease. Vet Microbiol 2009; 134(1-2):45-54.
https://doi.org/10.1016/j.vetmic.2008.09.009
23.Holden MTG, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013; 23(4):653-64.
https://doi.org/10.1101/gr.147710.112
24.Lebeaux D, Barbier F, Angebault C, Benmahdi L, Ruppe E, Felix B, et al. Evolution of nasal carriage of methicillin-resistant coagulase negative staphylococci in a remote population. Antimicrob Agents Chemother 2012; 56(1):315-23.
https://doi.org/10.1128/AAC.00547-11
25.Czekaj T, Ciszewski M, Szewczyk EM. Staphylococcus haemolyticus : an emerging threat in the twilight of the antibiotics age. Microbiology 2015; 161(11):2061-8.
https://doi.org/10.1099/mic.0.000178
26.Pradipta IS., Sandiana AT, Halimah E, Diantini A, Lestari K, Abdulah R. Microbial and resistance profile in isolate from adult sepsis patients: an observatonal study at an Indonesian private hospital during 2009-2012. Int J Pharm Sci Rev Res 2013; 19(2):24-9.
27.McCarhty H, Rudkin JK, Black NS, Gallagher L, O’Neill E, O’Gara JP. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 2015; 5:1.
https://doi.org/ 10.3389/fcimb.2015.00001



DOI: https://doi.org/10.19106/JMedSci005402202207

Article Metrics

Abstract views : 570 | views : 297




Copyright (c) 2022 Rani Afifah Nur Hestiyani, Wahyu Siswandari, Vitasari Indriani, I Dewa Sang Ayu Putu Peramiarti, Dwi Utami Anjarwati, Hermin Prihartini

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats

 

Creative Commons License
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by  Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at http://jurnal.ugm.ac.id/bik/.