Insecticide resistance and mechanisms of aedes aegypti (Diptera: Culicidae) in Yogyakarta, Indonesia

https://doi.org/10.19106/JMedSci005001201803

Budi Mulyaningsih(1*), Sitti Rahmah Umniyati(2), Tri Baskoro Tunggul Satoto(3), Ajib Diptyanusa(4), Dwi Aris Agung Nugrahaningsih(5), Yahiddin Selian(6)

(1) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta,
(2) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta,
(3) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(4) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(5) Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(6) Ministry of Health, Sub-directorate of Vector Control, Jakarta, Indonesia
(*) Corresponding Author

Abstract


For several decades, applications of organophosphates and pyrethroids insecticides have been extensively used to control Aedes aegypti as the primary dengue vector. Hence it is important to study dengue vector resistance status and its mechanisms in relation to long term use of insecticides. This study aimed to determine the resistance status and to characterize mechanisms of Ae. aegypti to organophosphates and pyrethroids using biological, biochemical and molecular assays. Larvae and puppae of Ae. aegypti were collected in the field of Plosokuning, Minomartani, Sleman, Yogyakarta, Indonesia. The biological assay was carried out using CDC Bottle Bioassay to test the resistant status to malation and cypermetrin. The biochemical assay was conducted using microplate assay with substrate α-naphthyl acetate to test the presence of esterase elevated activity, and the molecular assay was done using PCR with AaSCF7 and AaSCR7 primer to detect of point mutation at 1534 site, that located in the area of segment 6 of domain III. The biological assay showed Ae. aegypti suggests the possibility of resistance to malathion (mortality 82%) that needs to be confirmed further and already resistant to cypermetrin (mortality 76%). The biochemical assay of Ae. aegypti showed the presence of non-specific esterase elevated activity. The PCR method showed specific DNA bands were formed with the size of 748bp, and with sequencing showed there has been F1354C point mutation of voltage gated sodium chanel gene in the area of segment 6 of domain III. Long term use of insecticides did not successfully eliminate the targeted dengue vector, because Ae. aegypti mosquitoes were resistant to both insecticides. The results demonstrate the importance of designing better health policies regarding insecticide usage


Keywords


Organophosphate; pyrethroid; biological assay; biochemical assay; molecular assay

Full Text:

PDF


References

  1. Gubler DJ. Dengue and dengue hemorrhagica fever. Clin Microbiol Rev 1998; 11(3):408-96.
  2. World Health Organization (WHO). Dengue/dengue haemorrhagic fever. http://www.who.int/csr/disease/dengue/en/. 2015.
  3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013; 496(7446):504-7. http://dx.doi.org/10.1038/nature12060
  4. Kurniawati D. Rising Number of Dengue Fever Cases in Indonesia. 2013. http://www.establishmentpost.com/rising-number-of-dengue-fever-cases-in-indonesia/.
  5. Ministry of Health (MOH) Indonesia. A Health Profile of Indonesia 2014. Directorate General of Disease Control and Environmental Sanitation. MOH, 2015.
  6. Ministry of Health (MOH) Indonesia. Guidance book for DHF prevention and control in Indonesia Package B. Jakarta: MOH, 1999: 1-5.
  7. Mourya DT, Hemingway J, Leake CJ. Changes in enzyme titres with age in four geographical strains of Aedes aegypti and their association with insecticide resistance. Med Vet Entomol 1993; 7(1):11-6. http://dx.doi.org/10.1111/j.1365-2915.1993.tb00645.x
  8. Brengues C, Hawkes NJ, Chandre F, McCaroll L, Duchon S, Guillt P, et al. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol 2003; 17(1):87-94. http://dx.doi.org/10.1046/j.1365-2915.2003.00412.x
  9. Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol 2007; 16(6):785-98. http://dx.doi.org/10.1111/j.1365-2583.2007.00774.x
  10. Chang C, Shen WK, Wang TT, Lin YH, Hsu EL, Dai SMl. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti. Insect Biochem Mol Biol 2009; 39(4):272-8. http://dx.doi.org/10.1016/j.ibmb.2009.01.001
  11. Yanola J, Somboon P, Prapanthadara L. A novel point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance. 2008. The 2nd International Conference on Dengue and Dengue Haemorhagic Fever. Phuket, Thailand: 2008; 15-17.
  12. Yanola J, Somboon P, Walton C, Nachaiwieng W, Somwang P, Prapanthadara LA. High-throughput assays for detection of the F1534C mutation in the voltage gated sodium channel gene in permethrin-resistant Aedes aegypti and the distribution of this mutation throughout Thailand. Trop Med Int Health 2011; 16(4):501-9. http://dx.doi.org/10.1111/j.1365-3156.2011.02725.x
  13. Harris AF, Rajatileka S, Ranson H. Pyrethroid resistance in Aedes aegypti from Grand Cayman. Am J Trop Med Hyg 2010; 83(2):277-84. http://dx.doi.org/10.4269/ajtmh.2010.09-0623
  14. Srisawat R, Komalamisra N, Eshita Y, Zheng M, Ono K. Point mutations in domain II of the voltage-gated sodium channel gene in deltamethrin-resistant Aedes aegypti (Diptera: Culicidae). Appl Entomol Zool 2010; 45:275-82. http://dx.doi.org/10.1303/aez.2010.275
  15. Mardihusodo SJ. Application of non-specific esterase enzyme microassays to detect J Med Sci, Volume 50, No. 1, 2018 January: 24-3232 potential insecticide resistance of Aedes aegypti adults in Yogyakarta, Indonesia. Berkala Ilmu Kedokteran 1996; 28(4):167-71.
  16. Boewono DT, Widiarti. Susceptibility of Dengue Hemorrhagic Fever Vector (Aedes aegypti) Against Organophosphate Insecticide (Malathion and Temephos) in some Districts of Yogyakarta and Central Java Province. Buletin Penelitian Kesehatan 2007; 35(2):49-56.
  17. Widiarti, Heriyanti B, Boewono DT, Mujiono UW, Lasmiati, Yuliadi. Peta resistensi vektor demam berdarah dengue aedes aegypti terhadap insektisida kelompok organofosfat, karbamat dan pyrethroid di Propinsi Jawa Tengah dan Daerah Istimewa Yogyakarta. Buletin Penelitian Kesehatan 2011; 39(4):176-89.
  18. Center for Diseases Control. Guideline for Evaluating Insecticide Resistance in Vectors using the CDC Bottle Bioassay. 2010.Available from: http://www.cdc.gov/malaria.
  19. Lee HL. Esterase activities and temephos susceptibility in Aedes aegypti (L) larvae. Mosq Borne Dis Bull 1990;8:91-4.
  20. Mardihusodo SJ. Microplate assay analysis of potentialfor organophosphate insecticide resistancein Aedes aegypti in the Yogyakarta Municipality, Indonesia. Berkala Ilmu Kedokteran 1995; 27(2):71-9.
  21. Mulyaningsih B. Variation in susceptibility status to organophosphate insecticide among several geographic populations of aedes albopictus skuse in Indonesia. Berkala Ilmu Kedokteran 2004; 36(2):77-81
  22. Kawada H, Oo SZ, Thaung S, Kawashima E, Maung YN, Thu HM. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant aedes aegyptipopulations in Myanmar. Plos Negl Trop Dis 2014; 8(7):e3032. http://dx.doi.org/10.1371/journal.pntd.0003032
  23. WHO. Report of the WHO Informal Consultation: Test procedures for insecticide monitoring in malaria vectors, bio-efficacy and persistence of insecticide on treated surfaces. 1998. World Health Organization, Geneva, Switzerland (28-30 September 1998).
  24. Polson KA, Rawlins SC, Brogdon WG, Chadee DD. Characterisation of DDT and pyrethroid resistance in Trinidad and Tobago populations of aedes aegypti. Bull Entomol Res 2011; 101(4):435-41. http://dx.doi.org/10.1017/S0007485310000702
  25. WHO. Monitoring of Insecticide Risistance in Malaria Vectors. 2006. http://www.emro.who.int/rbm/Publications/Insecticide Resistance.
  26. Seixas G, Salgueiro P, Silva AC, Campos M, Spenassatto C, Reyes-Lugo M, et al. Aedes aegyption Madeira Island (Portugal): genetic variation of a recently introduced dengue vector. Mem Inst Oswaldo Cruz 2013; 108(Suppl 1):3-10. http://dx.doi.org/10.1590/0074-0276130386
  27. Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O, et al. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis 2011; 64(3):217-21.
  28. Crow JA, Potter PM, Borazjani A, Ross MK. Hydrolysis of pyrethroids by human and rate tissues: examination of intestinal, liver and serum carboxylesterase. Toxicol Appl Pharmacol 2007; 221(1):1-12. http://dx.doi.org/10.1016/j.taap.2007.03.002
  29. Kawada H, Higa Y, Komagata O, Kasai S, Tomita T, Thi Yen N, et al. Widespread distribution of a newly found point mutation in voltage-gated sodium channel in pyrethroid-resistant Aedes aegyptipopulations in Vietnam. PLoS Negl Trop Dis 2009; 3(10):e527. http://dx.doi.org/10.1371/journal.pntd.0000527



DOI: https://doi.org/10.19106/JMedSci005001201803

Article Metrics

Abstract views : 2525 | views : 3326




Copyright (c) 2018 Budi Mulyaningsih, Sitti Rahmah Umniyati, Tri Baskoro Tunggul Satoto, Ajib Diptyanusa, Dwi Aris Agung Nugrahaningsih, Yahiddin Selian

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.