Insecticide resistance and mechanisms of aedes aegypti (Diptera: Culicidae) in Yogyakarta, Indonesia

https://doi.org/10.19106/JMedSci005001201803

Budi Mulyaningsih(1*), Sitti Rahmah Umniyati(2), Tri Baskoro Tunggul Satoto(3), Ajib Diptyanusa(4), Dwi Aris Agung Nugrahaningsih(5), Yahiddin Selian(6)

(1) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta,
(2) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta,
(3) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(4) Department of Parasitology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(5) Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta
(6) Ministry of Health, Sub-directorate of Vector Control, Jakarta, Indonesia
(*) Corresponding Author

Abstract


For several decades, applications of organophosphates and pyrethroids insecticides have been extensively used to control Aedes aegypti as the primary dengue vector. Hence it is important to study dengue vector resistance status and its mechanisms in relation to long term use of insecticides. This study aimed to determine the resistance status and to characterize mechanisms of Ae. aegypti to organophosphates and pyrethroids using biological, biochemical and molecular assays. Larvae and puppae of Ae. aegypti were collected in the field of Plosokuning, Minomartani, Sleman, Yogyakarta, Indonesia. The biological assay was carried out using CDC Bottle Bioassay to test the resistant status to malation and cypermetrin. The biochemical assay was conducted using microplate assay with substrate α-naphthyl acetate to test the presence of esterase elevated activity, and the molecular assay was done using PCR with AaSCF7 and AaSCR7 primer to detect of point mutation at 1534 site, that located in the area of segment 6 of domain III. The biological assay showed Ae. aegypti suggests the possibility of resistance to malathion (mortality 82%) that needs to be confirmed further and already resistant to cypermetrin (mortality 76%). The biochemical assay of Ae. aegypti showed the presence of non-specific esterase elevated activity. The PCR method showed specific DNA bands were formed with the size of 748bp, and with sequencing showed there has been F1354C point mutation of voltage gated sodium chanel gene in the area of segment 6 of domain III. Long term use of insecticides did not successfully eliminate the targeted dengue vector, because Ae. aegypti mosquitoes were resistant to both insecticides. The results demonstrate the importance of designing better health policies regarding insecticide usage


Keywords


Organophosphate, pyrethroid, biological assay, biochemical assay, molecular assay

Full Text:

PDF



DOI: https://doi.org/10.19106/JMedSci005001201803

Article Metrics

Abstract views : 641 | views : 531




Copyright (c) 2018 Journal of the Medical Sciences (Berkala ilmu Kedokteran)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      

Creative Commons License
Journal of the Medical Sciences (Berkala Ilmu Kedokteran) by  Universitas Gadjah Mada is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at http://jurnal.ugm.ac.id/bik/.