Skip to main navigation menu Skip to main content Skip to site footer

Research article

Vol 0 No 0.1 (3000): ONLINE FIRST

Filtration of Kutawaru Cilacap batik waste using fly ash activated by sulfuric acid

DOI
https://doi.org/10.22146/jrekpros.11219
Submitted
December 11, 2023
Published
February 24, 2025

Abstract

The batik industry is one of the largest contributors to liquid waste. Batik liquid waste if not treated properly has the potential to increase disease and pollute the environment. Pollutant levels contained in the waste can be degraded by using fly ash as an adsorbent. Fly ash is obtained from Steam Power Plant waste. The purpose of this study was to determine the best concentration of sulfuric acid between 1M and 3M added to activate fly ash to reduce COD, BOD, TSS, color change and pH of Kutawaru batik waste. The research consisted of three stages: the first stage was the activation of fly ash by immersing it in a solution of 1M and 3M sulfuric acid with a ratio of 1:5 for 3 hours. Then, wash with water until the pH is neutral. Furthermore, the fly ash was dried using an oven at 105oC for 4 hours to a constant weight, resulting in sulfuric acid-activated fly ash. The second stage of the adsorption process, where batik waste was mixed with sulfuric acid-activated fly ash in a ratio of 5:1 for 3 hours, resulted in the waste after adsorption. In the last stage, testing of the waste before and after adsorption was carried out at the Cilacap Environmental Laboratory. The results showed that the best concentration of sulfuric acid for the activation of fly ash was 1M because it reduced COD, BOD and TSS by up to 90%. Changes in COD, BOD, TSS, color and pH of batik waste before and after adsorption using 1 M sulfuric acid-activated fly ash, namely COD 13678 mg/L to 1302 mg/L, BOD 8480 mg/L to 870 mg/L, TSS 460 mg /L becomes 47 mg/L, the color of the batik waste changes from black to yellow, and pH 9 becomes 7.

References

  1. Apriyani N. 2018. Industri batik: Kandungan limbah cair dan metode pengolahannya. Media Ilmiah Teknik Lingkungan. 3(1):21–29. doi:10.33084/mitl.v3i1.640.
  2. Arnesya Ramadhani, Sonya Hakim Raharjo, Retno Dwi Nyamiati. 2023. Utilization of fly ash and zeolite to reduce chemical oxygen demand (COD) in domestic waste at the Al Ihya Ulumaddin Islamic Boarding School Cilacap. Formosa Journal of Applied Sciences. 2(3):303–312. doi:10.55927/fjas.v2i3.3347.
  3. Blissett RS, Rowson NA. 2012. A review of the multicomponent utilisation of coal fly ash. Fuel. 97:1–23. doi: 10.1016/j.fuel.2012.03.024.
  4. Caroles JDS. 2019. Ekstraksi silika yang terkandung dalam limbah abu terbang batu bara. Fullerene Journal of
  5. Chemistry. 4(1):5. doi:10.37033/fjc.v4i1.43.
  6. Chadijah S, Ilyas Jurusan Kimia A, Sains dan Teknologi F, Alauddin Makassar U. 2013. Analisa penurunan kadar COD dan BOD limbah cair laboratorium biokimia uin makassar menggunakan fly ash (abu terbang) batubara. Jurnal Penelitian Sains Kimia. 1(1):64–75. https://journal.uin-alauddin.ac.id/index.php/al-kimia/article/view/16 22.
  7. Chen C, Zhang P, Zeng G, Deng J, Zhou Y, Lu H. 2010. Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chemical Engineering Journal. 158(3):616–622. doi: 10.1016/j.cej.2010.02.021.
  8. Danarto YC, Samun D. 2008. Pengaruh aktivasi karbon dari sekam padi pada proses adsorpsi logam Cr(VI). Ekuilibrium. 7(Vi):13–18. https://jurnal.uns.ac.id/ekuilibrium/article/view/49499.
  9. Doraja PH, Shovitri M, Kuswytasari ND. 2012. Biodegradasi limbah domestik dengan menggunakan inokulum alami dari tangki septik. Jurnal Sains dan Seni ITS. 1(1):44–47. http://www.ejurnal.its.ac.id/index.php/sains_seni/article/view/788/244. ISSN:2301-928X.
  10. Erwindo SJ. 2019. Karakterisasi air limbah batik di Kota Yogyakarta Dan Kabupaten Bantul dengan parameter BOD, COD, dan TSS. Jurnal Lingkungan. 1(7):1–14. https://dspa ce.uii.ac.id/bitstream/handle/123456789/16295/08nask ahpublikasi.pdf?sequence=16.
  11. Goodarzi F. 2006. Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel. 85(10-11):1418–1427. doi:10.1016/j.fuel.2005.11.022.
  12. Han F, Zhang GH, Gu P. 2012. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration. Journal of Hazardous Materials. 225-226:107–113. doi:10.1016/j.jhazmat.2012 .04.069.
  13. Jiyah, Sudarsono B, Sukmono A. 2017. Studi distribusi total suspended solid (TSS) di perairan pantai kabupaten demak menggunakan citra landsat. Jurnal Geodesi Undip.6(1):41–47. https://ejournal3.undip.ac.id/index.php/geod esi/article/view/15033.
  14. Konig-Péter A, Kocsis B, Kilár F, Pernyeszi T. 2014. Bioadsorption characteristics of Pseudomonas aeruginosa PAO1. Journal of the Serbian Chemical Society. 79(4):495– 508. doi:10.2298/JSC130314070K.
  15. Lumaela AK, Otok BW, Sutikno S. 2013. Pemodelan chemical oxygen demand (COD) sungai di surabaya dengan metode mixed geographically weighted regression. Jurnal Sains dan Seni ITS. 2(1):100–105. https://ejurnal.its.ac.id/index.php/sains_seni/article/view/3204.
  16. Lv GJ, Wu SB, Lou R. 2010. Characteristics of corn stalk hemicellulose pyrolysis in a tubular reactor. BioResources. 5(4):2051–2062. doi:10.15376/biores.5.4.2051-2062.
  17. Ma’arif NL, Hidayah Z. 2020. Kajian pola arus permukaan dan sebaran konsentrasi total suspended solid (TSS) di pesisir pantai kenjeran surabaya. Juvenil:Jurnal Ilmiah Kelautan dan Perikanan. 1(3):417–426. doi:10.21107/juven il.v1i3.8842.
  18. Menteri Negara Kependudukan Dan Lingkungan Hidup. 1991. Keputusan menteri negara kependudukan dan lingkungan hidup Nomor: Kep-03 / Menklh / II / 1991 tentang baku mutu limbah cair:707–712. https://www.regulasip.id/book/5306/read.
  19. Mufrodi Z, Widiastuti N, Kardika RC. 2008. Adsorpsi zat warna tekstil dengan menggunakan abu terbang (fly ash) untuk variasi massa adsorben dan suhu operasi. Prosiding Seminar Nasional Teknoin 2008 Bidang Teknik Kimia dan Tekstil:90–93.
  20. Niu P. 2013. Photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. Asian Journal of Chemistry. 25(2):1103–1106. doi:10.14233/ajchem.2013.13539.
  21. Setiawati M, Martini S, Nurulita R. 2022. Variasi molaritas NAOH dan alkali aktivator beton geopolimer. Jurnal Deformasi. 7(1):56. doi:10.31851/deformasi.v7i1.7983.
  22. Sulistia S, Septisya AC. 2020. Analisis kualitas air limbah domestik perkantoran. Jurnal Rekayasa Lingkungan.
  23. (1):41–57. doi:10.29122/jrl.v12i1.3658.
  24. Wijaya RA, Wijayanti S, Astuti Y. 2021. Fly ash limbah pembakaran batubara sebagai zat mineral tambahan (additive) untuk perbaikan kualitas dan kuat tekan semen. Media Komunikasi Teknik Sipil. 27(1):127–134. https://ejourn al.undip.ac.id/index.php/mkts/article/download/31558/1 9904.
  25. Yulianti E, Mahmudah R, Royana I. 2018. Pemanfaatan biosorben batang jagung teraktivasi asam nitrat dan asam sulfat untuk penurunan angka peroksida – asam lemak bebas minyak goreng bekas. Alchemy. 5(1):9. doi:10.18860
  26. /al.v5i1.3685.
  27. Yuniarti DP, Komala R, Aziz S. 2019. Pengaruh proses aerasi terhadap pengolahan limbah cair pabrik kelapa sawit di PTPN VII secara aerobik. Universitas PGRI Palembang. 4(2):7–16. https://jurnal.univpgri-palembang.ac.id/index.php/redoks/article/view/3504.