Evaluating Properties of Blended and High Volume Fly Ash Bottom Ash (FABA) Concrete in Peat Water

  • Monita Olivia Olivia Department of Civil Engineering, Universitas Riau
  • Alfian Kamaldi Department of Civil Engineering, Universitas Riau
  • Ismeddiyanto Department of Civil Engineering, Universitas Riau
  • Gunawan Wibisono Department of Civil Engineering, Universitas Riau
  • Edy Saputra Department of Chemical Engineering, Universitas Riau
Keywords: Bottom Ash, Fly Ash, Porosity, Sorptivity, Strength

Abstract

FABA is a by-product of coal combustion in power plants comprising fly ash (FA) and bottom ash (BA) in ratios of 80/20. Fly ash has great potential as a mineral ingredient in concrete, while bottom ash compromises its strength and durability. However, both materials are used to improve the strength and durability of structures in sulfate, chloride, and acidic environments. This research evaluated the properties of blended and high-volume FABA concrete, such as the strength, porosity, weight loss, and sorptivity in organic acidic peat water. OPC (Ordinary Portland Cement) was compared to the blended concrete containing 25% FABA and its high-volume containing 50% and 75% FABA with target strengths of 15, 21, and 29 MPa. The compressive strength of blended and high volume FABA increased during the immersion period, while the porosity and sorptivity rates decreased. Furthermore, the strength of the OPC concrete declined at 28 days, with a gradual marginal weight loss of 5% observed in all mixes. This research suggested that blended and high-volume FABA has potential as a construction material in an acidic peatland environment.

References

Amino, G.K. 2018. Hasil pembakaran batu bara PLN bakal diserap semen Indonesia. BUMN Track [Online]. Available at: https://bumntrack.com/berita/hasil-pembakaran-batu-bara-pln-bakal-diserap-semen-indonesia [Accessed 26 June 2019].

ASTM C618-19, 2019. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken: ASTM International.

ASTM C642-13, 2013. Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken: ASTM International.

Baco, N.S., Shahidan, S., Zuki S.S.M., Ali, N., & Azmi, M.A.M., 2020. Strength properties of untreated coal bottom ash as cement replacement. Journal of the Civil Engineering Forum 6, pp 13-18. https://doi.org/10.22146/jcef.47657

Bendapudi, S.C.K., 2011. Contribution of fly ash to the properties of mortar and concrete. International Journal of Earth Science and Engineering 04, pp 1017-1023.

Bertron, A., Duchesne, J., & Escadeillas, G., 2005. Attack of cement pastes exposed to organic acids in manure. Cement and Concrete Composites 27, pp 898-909. https://doi.org/10.1016/j.cemconcomp.2005.06.003

Berry, E.E., Hemmings, R.T., Zhang, M.H., Cornellius, B.J., & Golden, D.M., 1994. Hydration in high-volume fly ash concrete binders. ACI Material Journal 9, pp 382-389.

Burhanudin, M.K., Ibrahim, M.H.W., Sani, M.S.H.M., Juki, M.I., Jamaluddin, N., Jaya, R.P., Shahidan, S., Basirun, N.F., & Bosro, M.Z.M., 2018. Influence of ground coal bottom ash with different grinding time as cement replacement material on the strength of concrete. Malaysian Construction Research Journal 4, pp 93-102.

Chen, F., Gao, J., Qi, B., & Shen, D., 2017. Deterioration mechanism of plain and blended cement mortars partially exposed to sulfate attack. Construction and Building Materials 154, pp 849-856. https://doi.org/10.1016/j.conbuildmat.2017.08.017

Concrete Institute of Australia. (2014). Recommended practice concrete durability series Z7/07 performance tests to assess concrete durability, North Sydney: Concrete Institute of Australia.

Dyer, T., 2016. Influence of cement type on resistance to organic acids. Magazine of Concrete Research 69, pp 1-26. https://doi.org/10.1680/jmacr.16.00271

Fladr, J., Bily, P., Chylik, R., & Prosek, Z., 2019. Macroscopic and microscopic properties of high performance concrete with partial replacement of cement by fly ash. Solid State Phenomena 292 SSP, pp 108-113. https://doi.org/10.4028/www.scientific.net/SSP.292.108

Hemalatha, T., & Ramaswamy, A., 2017. A review on fly ash characteristics-Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production 147, pp 546-559. https://doi.org/10.1016/j.jclepro.2017.01.114

Huang, C-H., Lin, S-K., Chang, C-S., & Chen, H-J., 2013. Mix proportions and mechanical propertis of concrete containing very high-volume of Class F fly ash. Construction and Building Materials 46, pp 71-78. https://doi.org/10.1016/j.conbuildmat.2013.04.016

Salain, I.M.A.K., 2009. Pengaruh jenis semen dan jenis agregat kasar terhadap kuat tekan beton. Teknologi dan Kejuruan 32, pp 63-70. http://dx.doi.org/10.17977/tk.v32i1.3079

Indonesian Head of the Environmental Impact Management Agency, 1995. Keputusan Kepala Badan Pengendalian Dampak Lingkungan Nomor KEP-03/BAPEDAL/09/1995 Tentang Persyaratan Teknis Pengolahan Limbah Berbahaya dan Beracun. Jakarta: Badan Pengendalian Dampak Lingkungan.

Kazemian, S., Prasad, A., Huat, B.B.K., Bazaz, J.B., Mohammed, T.A., & Aziz, F.N.A., 2011. Effect of aggressive pH media on peat treated by cement and sodium silicate grout. Journal of Central South University 18, pp 840-847. https://doi.org/10.1007/s11771-011-0771-x

Kim, J.H., Noemi, N., & Shah, S.P., 2012. Effect of powder materials on the rheology and formwork pressure of self-consolidating concrete. Cement and Concrete Composite 34, pp 746-753. https://doi.org/10.1016/j.cemconcomp.2012.02.016

Mehta, P.K., 2004. High performance, high volume fly ash concrete for sustainable development. Proceedings of the International Workshop on Sustainable Development and Concrete Technology. Beijing, China.

Moffat, E.G, Thomas, M.D.A, Fahim, A., 2017. Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research 102, pp 127-135. https://doi.org/10.1016/j.cemconres.2017.09.008

Nadeem, A., Memon, S.A., & Lo, T.Y., 2014. The performance of fly ash and metakaolin concrete at elevated temperatures. Construction and Building Materials 46, pp 71-78. https://doi.org/10.1016/j.conbuildmat.2014.02.073

Olivia, M., Pradana, T., & Sitompul, I.R., 2017. Properties of plain and blended cement concrete immersed in acidic peat water canal. Procedia Engineering 171, pp 557-563. https://doi.org/10.1016/j.proeng.2017.01.372

Reiner, M., & Rens, K., 2006. High-volume fly ash concrete: analysis and application. Practice Periodical on Structural Design and Construction 11, pp 58-64. https://doi.org/10.1061/(ASCE)1084-0680(2006)11:1(58)

Rivera, F., Martinez, P., Castro, J., & Lopez, M., 2015. Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cement and Concrete Composites 63, pp 104-112. https://doi.org/10.1016/j.cemconcomp.2015.08.001

Pacheco-Torgal, F., & Jalali, S., 2009. Sulphuric acid resistance of plain, polymer modified and fly ash cement concretes. Construction and Building Materials 23, pp 3485-3491. https://doi.org/10.1016/j.conbuildmat.2009.08.001

Peek, A.M., Nguyen, N., & Wong, T., 2007. Durability planning and compliance testing of concrete in construction projects. Corrosion Control 007, Australia Corrosion Association, Sydney, Australia.

Permenkes., 2010. Peraturan Menteri Kesehatan Republik Indonesia no. 492/MENKES/PER/IV/2010 tentang Persyaratan Kualitas Air Minum, Jakarta: Kementerian Kesehatan Republik Indonesia.

Simcic, T., Pejovnik, S., De Schutter, G., & Bosiljkov, V.B., 2015. Chloride ion penetration into fly ash modified concrete during wetting-drying cycles. Construction and Building Materials 93, pp 1216-1223. https://doi.org/10.1016/j.conbuildmat.2015.04.033

Rafieizonooz, M., Mirza, J., Salim, M.R., Hussin, M.W., & Khankhaje, E., 2016. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials 116, pp 15-24. https://doi.org/10.1016/j.conbuildmat.2016.04.080

Ritung, S., Wahyunto, & Nugroho, K., 2012. Karakteristik dan Sebaran Lahan Gambut di Sumatera, Kalimantan dan Papua. In: Husen E, Anda M, Noor M, Mamat HS, Maswar, Fahmi A, Sulaiman Y (eds) Pengelolaan Lahan Gambut Berkelanjutan. Bogor: Balai Besar Litbang SDLP.

Satya, Y.S.D., Saputra, E., & Olivia, M., 2016. Performance of blended fly ash (FA) and palm oil fuel ash (POFA) geopolymer mortar in acidic peat environment. Materials Science Forum 841, pp 83-89. https://doi.org/10.4028/www.scientific.net/MSF.841.83

SNI 03-6468-2000. (2000). Tata cara perencanaan campuran tinggi dengan semen portland dengan abu terbang, Badan Standardisasi Nasional, Jakarta.

SNI 2847:2013. (2013). Persyaratan Beton Struktural untuk Bangunan Gedung. Jakarta: Badan Standardisasi Nasional.

SNI 1972:2008. (2008). Cara uji slump beton. Jakarta: Badan Standardisasi Nasional.

SNI 1974:2011. (2011). Cara uji kuat tekan beton dengan benda uji silinder. Jakarta: Badan Standardisasi Nasional.

Published
2022-11-30
How to Cite
Olivia, M. O., Kamaldi, A., Ismeddiyanto, Wibisono, G., & Saputra, E. (2022). Evaluating Properties of Blended and High Volume Fly Ash Bottom Ash (FABA) Concrete in Peat Water. Journal of the Civil Engineering Forum, 9(1), 59-70. https://doi.org/10.22146/jcef.3397
Section
Articles