Epidemiological features and climatological effects on future malaria control in Indonesia
Abstract
Purpose: Malaria is a leading cause of death worldwide, including in Indonesia. Climate change should be considered when addressing malaria control in Indonesia. This study examined the relationship between climatological parameters (temperature, wind speed, humidity, and rainfall) and malaria cases in Indonesia from 2006 to 2015.
Methods: Data on climatological parameters were obtained from Indonesia's 2022 statistics, while malaria case data were taken from the annual report of Indonesia's Ministry of Health. Results were presented using maps, diagrams, and graphs. The associations between climatological parameters and malaria cases were analyzed annually using GraphPad Prism 9 software.
Results: Between 2006 and 2015, the API fluctuated each year. Papua province had the highest malaria incidence in Indonesia (25.5%). A significant decline in malaria cases was observed outside Papua province, whereas cases in Papua tended to increase annually. During this period, annual temperature ranged from 23.39°C to 28.44°C, wind speed from 1.01 m/s to 17.54 m/s, relative humidity from 70.85% to 85.84%, and rainfall from 99.74 to 3,838.2 mm3.
Conclusion: From 2006 to 2015, annual temperature, rainfall, and relative humidity showed weak positive correlations with the API, whereas annual wind speed showed a negative correlation.
References
Kementerian Kesehatan Republik Indonesia. Substansi malaria. 2022. Available from: [Website]
Setiyaningsih R, Yanti SAO, Lasmiati L, Mujiyono M, Prihatin MT, Widiarti W, et al. Keanekaragaman Anopheles dalam ekosistem hutan dan resiko terjadinya penularan malaria di beberapa provinsi di Indonesia. Media Penelitian dan Pengembangan Kesehatan. 2019;29(3):243-254.
Science and Information for Climate-Smart Nation. Global climate dashboard. 2022. Available from: [Website]
Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: implications for malaria control in a future warmer climate. International Journal of Environmental Research and Public Health. 2021;18(14):7255.
Kim YM, Park JW, Cheong HK. Estimated effect of climatic variables on the transmission of Plasmodium vivax malaria in the Republic of Korea. Environmental Health Perspective. 2012;120(9): 1314–1319.
Mweya CN, Kimera SI, Stanley G, Misinzo G, Mboera LEG. Climate change influences potential distribution of infected Aedes aegypti, which is associated with dengue epidemic risk areas in Tanzania. PLoS ONE. 2016;11(9):e0162649.
Tang SCN, Rusli M, Lestari P. Climate variability and dengue hemorrhagic fever in Surabaya, East Java, Indonesia. Indian Journal of Public Health Research and Development. 2020;11(2):131-137.
Afrane YA, Githeko AK, Yan G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of environmental changes in East Africa Highlands. Annals of the New York Academy of Sciences. 2012;1249:204-210.
Aytekin S, Aytekin AM, Alten B. Effect of different larval rearing temperatures on the productivity (RO) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics. Journal of Vector Ecology. 2009;34(1):32-42.
Christiansen-Jucht CD, Parham PE, Saddler A, Koella JC, Basáñez MG. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s. Parasites and Vectors. 2015;8:456.
Barreaux AMG, Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasites and Vectors. 2018; 11(1):485.
Sugiyono. Metode penelitian kuantitatif, kualitatif, dan R&D. Bandung: Alfabeta; 2012.
World Health Organization. World malaria report 2021. Geneva: World Health Organization; 2022. Available from: [Website]
Babaie J, Barati M, Azizi M, Ephtekhari A, Sadat SJ. A systematic evidence review of the effect of climate change on malaria in Iran. Journal of Parasitic Diseases. 2018;42(3):331–340.
Suwito S, Hadi UK, Sigit SH, Sukowati S. Hubungan iklim, kepadatan nyamuk Anopheles dan kejadian penyakit malaria. Jurnal Entomologi Indonesia. 2010;7(1):42.
Bellone R, Failloux AB. The role of temperature in shaping mosquito-borne viruses transmission. Frontiers in Microbiology. 2020;11:584846.
Impoinvil DE, Cardenas GA, Gihture JI, Mbogo CM, Beier JC. Constant temperature and time period effects on Anopheles gambiae egg hatching. Journal of the American Mosquito Control Association. 2007; 23(2):124–130.
Kipruto EK, Ochieng AO, Anyona DN, Mbalanya M, Mutua EN, Onguru D, et al. Effect of climatic variability on malaria trends in Baringo County, Kenya. Malaria Journal. 2017;16(1):220.
Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M. Alert threshold algorithms and malaria epidemic detection. Emerging Infectious Diseases. 2004;10(7):1220–1226.
Wangdi K, Singhasivanon P, Silawan T, Lawpoolsri S, White NJ, Kaewkungwal J. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan. Malaria Journal. 2010;9(1):251.
Li T, Yang Z, Wang M. Temperature, relative humidity and sunshine may be the effective predictors for occurrence of malaria in Guangzhou, Southern China, 2006–2012. Parasites and Vectors. 2013;6(1):155.
Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE. 2013;8(11):e79276.
Shapiro LLM, Whitehead SA, Thomas MB. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biology. 2017;15 (10):e2003489.
Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters. 2013;16(1): 22-30.
Mofu RM. Hubungan lingkungan fisik, kimia dan biologi dengan kepadatan vektor Anopheles di wilayah kerja Puskesmas Hamadi Kota Jayapura. Jurnal Kesehatan Lingkungan Indonesia. 2013; 12(2):120–126.
Endo N, Eltahir EAB. Environmental determinants of malaria transmission around the Koka Reservoir in Ethiopia. GeoHealth. 2018;2(3):104-115.
Omonijo A, Matzarakis A, Oguntoke O, Adeofun C. Influence of weather and climate on malaria occurrence based on human-biometeorological methods in Ondo State, Nigeria. Journal of Environmental Science and Engineering. 2011;5(9): 1215–1228.
Panzi EK, Okenge LN, Kabali EH, Tshimungu F, Dilu AK, Mulangu F, et al. Geo-Climatic factors of malaria morbidity in the democratic Republic of Congo from 2001 to 2019. International Journal of Environ- mental Research and Public Health. 2022;19(7): 3811.
Santos-Vega M, Martinez PP, Vaishnav KG, Kohli V, Desai V, Bouma MJ, et al. The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities. Nature Communications. 2022;13(1):533.
Nyasa RB, Awatboh F, Kwenti TE, Titanji VPK, Ayamba NLM. The effect of climatic factors on the number of malaria cases in an inland and a coastal setting from 2011 to 2017 in the equatorial rain forest of Cameroon. BMC Infectious Diseases. 2022; 22(1):461.
Akinbobola A, Omotosho JB. Predicting malaria occurrence in Southwest and North Central Nigeria using meteorological parameters. International Journal of Biometeorology. 2013;57(5):721–728.
Zhang Y, Liu QY, Luan RS, Liu XB, Zhou GC, Jiang JY, et al. Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006–2010. BMC Public Health. 2012;12(1):544.
Zhang Y, Bi P, Hiller JE. Meteorological variables and malaria in a Chinese temperate city: A twenty-year time-series data analysis. Environment Inter- national. 2010;36(5):439–445.
Duarsa ABS. Dampak pemanasan global terhadap risiko terjadinya malaria. Jurnal Kesehatatan Masyarakat Andalas. 2008;2(2):181–185.
Abiodun GJ, Maharaj R, Witbooi P, Okosun KO. Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malaria Journal. 2016;15(1):364.
Mala AO, Irungu LW, Mitaki EK, Shililu JI, Mbogo CM, Njagi JK, et al. Gonotrophic cycle duration, fecundity and parity of Anopheles gambiae complex mosquitoes during an extended period of dry weather in a semi-arid area in Baringo County, Kenya. International Journal of Mosquito Research. 2014;1(2):28-34.
Lingala MAL, Singh P, Verma P, Dhiman RC. Determining the cutoff of rainfall for Plasmodium falciparum malaria outbreaks in India. Journal of Infection and Public Health. 2020;13(7):1034–1041.
Park JW, Cheong HK, Honda Y, Ha M, Kim H, Kolam J, et al. Time trend of malaria in relation to climate variability in Papua New Guinea. Environmental Health and Toxicology. 2016;31:e2016003.
Thomson MC, Ukawuba I, Hershey CL, Bennett A, Ceccato P, Lyon B, et al. Using rainfall and temperature data in the evaluation of national malaria control programs in Africa. The American Journal of Tropical Medicine and Hygiene. 2017;97(3 Suppl):32–45.
Wiwanitkit V. Correlation between rainfall and the prevalence of malaria in Thailand. Journal of Infection. 2006;52(3):227–230.
Jawara M, Pinder M, Drakeley CJ, Nwakanma DC, Jallow E, Bogh C, et al. Dry season ecology of Anopheles gambiae complex mosquitoes in The Gambia. Malaria Journal. 2008;7(1):156.
Sandy S, Wike I. Pengaruh iklim terhadap annual parasite incidence malaria di Kabupaten Jayapura tahun 2011 – 2018. Journal of Health Epidemiology and Communicable Diseases. 2019;5(1):9-15.
Midekisa A, Beyene B, Mihretie A, Bayabil E, Wimberly MC. Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia. Parasites and Vectors. 2015;8(1):339.
Copyright (c) 2025 Anwar Rovik, Ayu Rahayu, Oktaviani Naulita Turnip, Edwin Widyanto Daniwijaya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
