Karakteristik kawat TMA (titanium molybdenum alloy) dan penggunaannya dalam perawatan ortodonti

https://doi.org/10.22146/mkgk.33761

Putri Arifiani(1*), Erwin Siregar Erwin Siregar(2)

(1) Program Pendidikan Dokter Gigi Spesialis Ortodonti, Fakultas Kedokteran Gigi, Universitas Indonesia, Jakarta, Indonesia
(2) Departemen Ortodonti, Fakultas Kedokteran Gigi, Universitas Indonesia, Jakarta, Indonesia
(*) Corresponding Author

Abstract


Kawat merupakan salah satu piranti yang penting dalam perawatan ortodonsia. Perkembangan terkini dari kawat ortodonsia menghasilkan beberapa jenis kawat dengan karakteristik yang berbeda-beda. Studi pustaka membahas karakteristik kawat ortodonsi beta titanium atau Titanium Molybdenum Alloy (TMA) dan penggunaannya dalam perawatan ortodonsi. Perbedaan karakteristik tiap kawat menjadi hal yang perlu dipertimbangkan secara klinis. Kawat beta titanium atau sering disebut juga dengan kawat TMA (Titanium Molybdenum Alloy), diperkenalkan pertama kali oleh Goldberg dan Charles Burstone pada tahun 1979. Kawat ini mempunyai komposisi 77,8% titanium, 11,3% molybdenum, 6,6% zirconium, dan 4,3% tin. Ion molybdenum berperan menstabilkan fasa β titanium pada suhu ruang, sedangkan zirconium dan tin berperan dalam meningkatkan kekuatan dan kekerasan. Keunggulan kawat TMA antara lain memiliki derajat kekakuan atau modulus elastisitas yang rendah, springback besar, energi potensial yang besar, formabilitas dan jointability yang baik, serta biokompatibel. Kawat TMA direkomendasikan sebagai kawat intermediate setelah aligning & leveling dengan kawat nikel titanium, dan pada tahap akhir perawatan (detailing & finishing), namun tidak direkomendasikan untuk pergerakan sliding. Hal ini disebabkan karena kawat TMA mempunyai koefisien friksi yang besar. Seiring perkembangannya, berbagai kawat TMA diproduksi dengan implantasi ion maupun coating, yang bertujuan untuk memperbaiki karakteristik fisik kawat TMA sehingga meningkatkan performa kawat TMA dalam aplikasi klinisnya.

ABSTRACT: The characteristics of Titanium Molybdenum Alloy wire and its apllication in orthodontic treatment. Wire is one of the most important devices in orthodontic treatment. Recent developments in orthodontic wires result a high variety of wires with different characteristics. The differences in characteristic of each wire should be considered in clinical application. The beta titanium wire, also known as TMA (Titanium Molybdenum Alloy), was firstly introduced by Goldberg and Charles Burstone in 1979. This wire is composed of 77.8% titanium, 11.3% molybdenum, 6.6% zirconium, and 4.3% tin. Molybednum contributes to stabilize the beta phase of titanium at room temperature, while additions of zirconium and tin contribute to increase the strength and hardness of the alloy. The excellences of TMA wire are low stiffness, high springback, high potential energy, good formability, biocompatible and the ability of direct welding. TMA is recommended to be used as intermediate wires after aligning and leveling stage with nickel titanium wires, and also to be used in detailing and final finishing stage, but not recommended in space closure with sliding mechanism. It is because of the major drawback of TMA that is high coefficient of friction. As its development, a number variety of TMA wires are produced with ion implantation or coating, which aims to improve physical properties of TMA wire thus increasing its performance in clinical application.


Keywords


Kawat TMA; beta titanium; karakteristik; TMA wire; beta titanium; characteristics

Full Text:

PDF


References

1. Szuhanek C, Fleser T, Glavan F. Mechanical Behavior of Orthodontic TMA Wires. WSEAS Transaction on biology and biomedicine. 2010; 7: 277-286.

2. Santis RD, Dolci F, Laino A, Martina R, Ambrosio L, Nicolais L. The Eulerian buckling test for orthodontic wires. European Journal of Orthodontics. 2008; 30: 190-198.

3. Burstone CJ, Goldberg AJ. Beta Titanium: A new orthodontic alloy. America Journal of Orthodontics. 1980; 77: 121-132.

4. Johnson E. Relative Stiffness of Beta Titanium Archwires. Angle Orthod. 2003; 73: 259-269.

5. Verstrynge A, Humbeeck JV. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 2006; 130: 460-470.

6. Kusy RP, Whitley JQ, Gurgel JdA. Comparisons of surface roughnesses and sliding resistances of 6 titanium-based or TMA-type archwires. Am J Orthod Dentofacial Orthop. 2004; 126: 589-603.

7. Juvvadi SR, Kailasam V, Padmanabhan S, Chitharanjan AB. Physical, mechanical, and flexural properties of 3 orthodontic wires: An in-vitro study. Am J Orthod Dentofacial Orthop. 2010; 138: 623-630.

8. Brantley W, Eliades T. Orthodontic Materials Scientific and Clinical Aspects. New York: Thieme; 2001.

9. Anusavice K. Phillips Science of Dental Materials. St. Louis: Elsevier; 2003.

10. Yu J-H, Wu L-C, Hsu J-T, Chang Y-Y, Huang H-H, Huang H-L. Surface Roughness and Topography of Four Commonly Used Types of Orthodontic Archwire. Journal of Medical and Biological Engineering. 2011; 31: 367-370.

11. Krishnan V, Kumar KJ. Mechanical Properties and Surface Characteristics of Three Archwire Alloys. Angle Orthod. 2004; 74: 825-831.

12. Mahler DB, Sakaguchi RL. Restorative Materials - Metal. In: Sakaguchi RL, Powers JM, editors. Craig's Restorative Dental Materials. Philadelphia: Mosby; 2012. 199-240.

13. Premanand P, Kumar SS, Shankar AJ. An Evaluation and Comparison of Composition and Surface Characteristics of Different Orthodontic Wires - Energy Dispersing Spectrometry and SEM Study. International Journal of Recent Trends in Science and Technology. 2014; 10: 233-238.

14. Kula K, Phillips C, Gibilaro A, Proffit WR. Effect of ion implantation of TMA archwire on the rate of orthodontic sliding space closure. Am J Orthod Dentofacial Orthop. 1998; 114: 577-581.

15. Ryan R, Walker G, Freeman K, Cisneros GJ. The effects of ion implantation on rate of tooth movement: An in vitro model. Am J Orthod Dentofacial Orthop. 1997; 112: 64-68.

16. Proffit WR. Biomechanics, mechanics, and contemporary orthodontic appliances. In: Proffit WR, editor. Contemporary Orthodontics. St. Louis: Elsevier; 2013. 312-336.

17. Klump JP, Duncanson MG, Nanda RS, Currier GF. Elastic energy/ stiffness ratos for selected orthodontic wires. Am J Orthod Dentofacial Orthop. 1994; 106: 588-596.

18. Goldberg J, Burstone CJ. An Evaluation of Beta Titanium Alloys for Use in Orthodontic Appliances. J Dent Res. 1979; 58: 593-600.

19. Nelson KR, Burstone CJ, Goldberg AJ. Optimal welding of beta titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 1987; 92: 213-219.

20. Burstone CJ. Application of Bioengineering to Clinical Orthodontics. In: Graber LW, Vanarsdall RL, Vig KWL, editors. Orthodontics: Current Principles and Techniques. Philadelphia: Elsevier Inc; 2011. H. 345-368.

21. Clocheret K, Willems G, Carels C, Celis JP. Dynamic frictional behaviour of orthodontic archwires and brackets. European Journal of Orthodontics. 2004; 26: 163-170.

22. Cash A, Curtis R, Garrigia-Majo D, McDonald F. A comparative study of the static and kinetic frictional resistance o titanium molybdenum alloy archwires in stainless steel brackets. European Journal of Orthodontics. 2004; 26: 105-111.

23. Rahilly G, Price N. Nickel allergy and orthodontics. Journal of Orthodontics. 2003; 30: 171-174.

24. Kuhlberg A, Nanda R. Principles of Biomechanics. In: Nanda R, editor. Biomechanics and Esthetic Strategies in Clinical Orthodontics. St. Louis: Elsevier; 2005. H. 1-16.

25. Claro CAdA, Abrao J, Reis SAB. Forces in stainless steel, Timolium and TMA intrusion arches, with different bending magnitudes. Braz Oral Res. 2007; 21: 140-145.



DOI: https://doi.org/10.22146/mkgk.33761

Article Metrics

Abstract views : 6082 | views : 9991

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 MKGK (Majalah Kedokteran Gigi Klinik) (Clinical Dental Journal) UGM

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View my stats

site
stats