Vegetasi Habitat Komodo dalam Bentang Alam Riung dan Pulau Ontoloe di Nusa Tenggara Timur
Willem Amu Blegur(1*), Tjut Sugandawaty Djohan(2), Su Ritohardoyo(3)
(1) Mahasiswa Sekolah Pascasarjana Ilmu Lingkungan Universitas Gadjah Mada, Yogyakarta
(2) Fakultas Biologi Universitas Gadjah Mada, Yogyakarta Indonesia
(3) Fakultas Geograἀ Universitas Gadjah Mada, Yogyakarta
(*) Corresponding Author
Abstract
Penelitian ini mengkaji vegetasi habitat komodo dalam bentang alam Riung dan Ontoloe. Ekosistem karst mendominasi di Riung dan Ontoloe. Lokasi kajian merupakan taman nasional yaitu CA Wolo Tado, CA Riung dan TWAL 17 Pulau. Taman nasional ditetapkan pada tahun 1992 dan 1996. Pembakaran sabana di hutan sabana atau savanna woodland dengan skala kecil menjaga ketersediaan sabana di Pulau Besar, Flores. Sabana tersebut merupakan sumber makanan bagi pakan komodo yaitu rusa (Cervus timorensis). Sebaliknya, di Pulau Kecil atau Ontoloe tidak ada pembakaran sabana berskala kecil. Secara khusus, penelitian ini, mempelajari: a) tipe ekosistem penyusun bentang alam Pulau Besar dan Pulau Kecil; b) cacah jenis, densitas dan growth form vegetasi habitat; c) kualitas ἀsiko kimia tanah yaitu temperatur, tekstur, pH, NO3, NH4, PO4, K tersedia; udara yaitu temperatur dan salinitas air ekosistem hutan bakau. Data dikoleksi dengan kuadrat plot dengan bantuan transek. Ukuran plot pada ekosistem hutan bakau, hutan ekoton dan hutan legong 20mx20m dengan ulangan 4x. Sedangkan padang rumput yang jarang pohon, ukuran plot 100mx100m dengan ulangan 4x. Data dicuplik berupa: cacah jenis, densitas dan growth form penyusun vegetasi. Data ἀsikokimia tanah, udara dan air dicuplik di bawah kanopi dan gap kanopi. Hasil yang diperoleh tipe ekosistem habitat di Pulau Besar lebih banyak daripada di Pulau Kecil yaitu ekosistem hutan bakau, hutan ekoton, hutan sabana, dan hutan legong. Cacah jenis, densitas dan growth form di Pulau Besar juga lebih tinggi daripada di Pulau Kecil. Hal ini merespon tekstur tanah, kadar NO3, kadar NH4 dan temperatur. Pada Pulau Kecil, ditemukan ancaman dengan densitas yang cukup tinggi per 4 ha yaitu sapling L. glauca 179 individu, A. lebbeck 353 individu dan semak L. camara 169 individu. Hal ini membuktikan bahwa pembakaran hutan sabana dengan skala kecil menjaga ketersediaan sabana di Pulau Besar, sehingga komodo akan terlindungi.
This study examines the vegetation of Komodo habitat in the Riung and Ontoloe landscapes. the karst ecosystem dominates in Riung and Ontoloe. The study location is a national park of CA Wolo Tado, CA Riung and TWAL 17 Islands. National parks were set in 1992 and 1996. the savanna Ḁres in savanna woods or small-scale savanna woodland keep the availability of savannas on the Great Island of Flores. Sabana is a source of food for feeding dragons deer (Cervus timoren-sis). On the other hand, on Small Island or Ontoloe there is no small scale savanna burning. Speciacally, this study, studied: a) the type of ecosystem composing the landscape of Big Island and Small Islands; B) count type, density and growth form of habitat vegetation; C) quality of soil chemical physics ie temperature, texture, pH, NO3, NH4, PO4, K available; Air that is temperature and salinity water ecosystem of mangrove forest. Data collected with square plot with transect help. ἀe plot size of the mangrove ecosystem, the ecoton forest and the 20mx20m legong forest with 4x replications. While a rare meadow of trees, plot size 100mx100m with 4x repeat. ἀe data is cultivated in the form of: count type, density and growth form of vegetation. Physicochemical data of soil, air and water are collected under canopy and canopy gap. ἀe results obtained by habitat ecosystem type in Pulau Besar are more than in Small Island, ie mangrove forest ecosystem, ecoton forest, savannah forest, and forest legong. Character type, density and growth form on the Big Island is also higher than in Small Island. It responds to soil texture, NO3 levels, NH4 levels and temperature. On Small Island, there were threats with high density per 4 ha ie Sapling L. glauca 179 individuals, A. lebbeck 353 individuals and L. camara bushes 169 individuals. ἀis proves that small-scale savage forest savings keep the availability of savannas on the Big Island, so that the Komodo dragon will be protected.
Keywords
Full Text:
PDFReferences
Achmad, A. (2011). Rahasia Ekosistem Hutan Bukit Kapur. Surabaya: Brillian International
Auffenberg, W. (1981). The Behavioral Ecology of the Komodo Monitor. Gainesville: University Presses of Florida.
Barbour, M.G, J.H. Burk dan W.D. Pitts. (1986). Terresterial Plant Ecology, 2nd Ed. California: The Benjamin/Cummings Publishing Company, Inc.
Brewer, J.E dan J. H. Zar. (1984). Field and laboratory methods for general ecology 2nd. Dubuque: Wm. C. Brown Publ.
Ciofi, C., dan M. E. de Boer. (2004). Distribution and Conservation of the Komodo Monitor (Varanus komodoensis). Herpetological 14: 99 – 107.
Djohan, T. S., (2014). Petunjuk Praktikum Ekologi Lanjut Biologi. Laboratorium Ekologi dan Konservasi, Fakultas Biologi, Universitas Gadjah Mada, Fakultas. Yogyakarta.
de Garine-Wichatitsky, M., Y. Soubeyran, D. Maillard dan P. Duncan. (2005). The diets of introduced rusa deer (Cervus timorensis russa) in a native sclerophyll forest and a native rainforest on New Caledonia. New Zealand Journal of Zoology 32: 117 – 126.
Fuping, Z., P. Wanxia, S. Tongqing, W. Kelin, W. Haiyong, S. Xijuan dan Z. Zhaoxia. (2007). Changes in vegetation after 22 years’ natural restoration in the karst disturbed area in northwestern Guangxi, China. Acta Ecologica Sinica 27: 5110-5119.
Ginantra, K., S. Putra, W. Suarna dan W. Kasa. (2014). Botanical Composition of forage by Timor Deer (Cervus timorensis Blainville) in A Monsoon Forest and Savanna of West Bali National Park. International Journal of Pure & Applied Bioscience 2(5): 205-213.
Harlow, H.J., D. Purwandana, T.S. Jessop, dan J. A. Phillips. (2010). Body temperature and thermoregulation of Komodo dragons in the field. Thermal Biology 35: 338-347.
Hidayatullah, M. (2013). Pemanfaatan Mangrove oleh Masyarakat di Nusa Tenggara Timur. Warta Cendana Ed. VI No 2:9-15.
IUCN. (2004). A Global Species Assessment. Cambridge: Thanet Press Limited.
IUCN. (2008). World Heritage Caves and Karst: A Thematic Study. Switzerland: IUCN Programme on Protected Areas.
Jessop, T.S., J. Sumner, H. Rudiharto, D. Purwandana, M.J. Imansyah dan J.A. Phillips. (2004). Distribution, use and selection of nest type by Komodo Dragons. Biological Conservation 117: 463 – 470.
Kitamura, S., C. Anwar, A. Chaniago dan S. Baba.(1997). Handbook of Mangrove in Indonesia: Bali & Lombok. Denpasar: Penerbit Jaya Abadi.
Krebs, C.J. (2009). Ecology, 6th Ed. St. Fransisco: Pearson Education, Inc.
Liu, C.C., Y.G. Liu, D.Y. Fan and K. Guo. (2012). Plant drought tolerance assessment for re-vegetation in heterogeneous karst landscape of southwestern China. Flora 207: 30-38.
Lu, X., H. Toda, F. Ding, S. Fang, W. Yang dan H. Xu. (2014). Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. European Journal of Soil Biology 61: 49-57.
MacArthur, R.H., dan E.O. Wilson. (1963). An Equilibrium Theory of Insular Zoogeography. Evolution 17 (4): 373-387.
Mitsch, W.J dan J.G. Gosselink. (2000). Wetland 3rd edition. Kanada: John Wiley & Sons, Inc.
Muller – Dumbois, D., dan Ellenberg. (1974). Aims and methods of vegetation ecology. New York: John Wiley and Sons, Inc.
Ouwens, P.A. (1912). On a large Varanus species from the island of Komodo. Buletin Jardin Botanic Buitenzorgi 6: 1-3.
Primack, R.B., J. Supriatna, J. Indrawan, dan P. Kramadibrata. (1998). Biologi Konservasi. Jakarta: Penerbit Yayasan Obor Indonesia.
Pritekel, C., A. Whittemore-Olson, N. Snow, dan J.C. Moore. (2006). Impacts from Invasive Plant Species and Their Control on the Plant Community and Belowground Ecosystem at Rocky Mountain National Park, USA. Applied Soil Ecology 32:132-141.
UNEP-CITES. (2013). Appendices I, II and III. Switzerland: International Environment House.
Iani, R.A.G., R.R. Rodrigues, T.E. Dowson, H. Lambers, dan R.S. Oliveira. (2014). Soil pH Accounts Differences in Species Distribution and Leaf Nutrient Concentration of Brazilian Woodland Savannah and Seasonally Dry Forest Species, Perspective in Plant Ecology. Evolution and Systematics 16:64-74.
Walker, L.R., dan S.D. Smith. (1997). Impacts of Invasive Plants on Community and Ecosystem Properties. In Luken, J.O., dan J.W. Thieret, Assessment and Management Plant Invasions. New York: Penerbit Springer, p: 69-86.
Walter, H. (1971). Ecological of Tropical and Subtropical Vegetation. New York: Van Nostrand Reinhold Company, 207-265 pp.
Xiangkuna, Q., W. Kelina and Z. Chunhua. (2013). Effectiveness of ecological restoration projects in a karst region of southwest China assessed using vegetation succession mapping. Ecological Engineering 54: 245-253.
Yuan, W., Y.L. Fei, Z.J. Chi, Y.Y. Chun and D.L. Deanglis. (2011). Relationship between vegetation restoration and soil microbial characteristics in degraded karst regions: a case study. Pedosphere 21: 132-138.
Zhu, H., X. He, K. Wang, Y. Su dan J. Wu. (2011). Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a karst ecosystem. European Journal of Soil Biology 51: 1-7.
DOI: https://doi.org/10.22146/mgi.24530
Article Metrics
Abstract views : 8151 | views : 11995Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Majalah Geografi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Volume 35 No 2 the Year 2021 for Volume 39 No 1 the Year 2025
ISSN 0215-1790 (print) ISSN 2540-945X (online)
Statistik MGI