Fern Species-Area Relationship in Urban Anthropogenic Islands in Slawi, Tegal, Central Java

https://doi.org/10.22146/jtbb.87781

Agung Sedayu(1*), Novita Putri(2), Aminudin Aminudin(3), Muchtar Mawardi(4), M. Isnin Noer(5), Lana Maulana(6)

(1) Biology Study Program, Faculty of Mathematics & Natural Sciences, Universitas Negeri Jakarta, Gd. Hasjim Asjarie lt.9. Jl. Rawamangun Muka, Jakarta 13220, Indonesia
(2) Biology Study Program, Faculty of Mathematics & Natural Sciences, Universitas Negeri Jakarta, Gd. Hasjim Asjarie lt.9. Jl. Rawamangun Muka, Jakarta 13220, Indonesia
(3) Environment Agency (DLH) Kabupaten Tegal, Jl. Professor Muhammad Yamin, Kudaile, Kec. Slawi, Kabupaten Tegal, Central Java 52413, Indonesia
(4) Environment Agency (DLH) Kabupaten Tegal, Jl. Professor Muhammad Yamin, Kudaile, Kec. Slawi, Kabupaten Tegal, Central Java 52413, Indonesia
(5) Biology Study Program, Faculty of Mathematics & Natural Sciences, Universitas Negeri Jakarta, Gd. Hasjim Asjarie lt.9. Jl. Rawamangun Muka, Jakarta 13220, Indonesia
(6) Herbarium Biologi (JUNJ), Faculty of Mathematics & Natural Sciences, Universitas Negeri Jakarta, Gd. Ex BAAK lt 1. Jl. Rawamangun Muka, Jakarta 13220, Indonesia
(*) Corresponding Author

Abstract


In anthropogenic islands as urban parks, the fern species richness and composition may be determined ecologically by the quality of habitat, including area greenness, or biogeographically by area size. As the development of the theory of island biogeography also includes man-made parks, it is feasible to test whether area-species relationship applies in these urban parks, and is more pronouncedly evident compared to another ecological factor, such as NDVI. Total species number and composition of 8 urban parks in a kecamatan in Tegal Regency were collected and arranged in clustering methods to understand the similarity between parks. The similarity analysis result is important for the management of the parks in Slawi. The species richness data is subsequently tested using Pearson correlation and regression against NDVI and area sizes. The relation between NDVI and species richness is non-significant (p=0.058), while area size and species richness is significant (p=0.003). This signifies that the urban fern species richness is determined by area as biogeographical factor, compared to NDVI as ecological factor. This result is important for the purpose of designing and managing urban parks as evidently size is important in the effort of attracting native biodiversity into urban parks and in turn enhancing the well-being of urban population.

 


Keywords


Green spaces; Island biogeography; Pteridophytes; Spontaneous ferns; Urban biodiversity

Full Text:

PDF


References

Agatha, S.M. et al., 2019. Panduan lapangan paku-pakuan (Pteridofita) di Taman Margasatwa Ragunan, Jakarta: Laboratorium Biologi FMIPA Universitas Negeri Jakarta.

Andayaningsih, D., Chikmawati, T. & Sulistijorini, S., 2013. Keanekaragaman Tumbuhan Paku Terestrial di Hutan Kota DKI Jakarta. Berita Biologi, 12(3), pp.297–305.

Anjum, S. et al., 2014. Ecological observations on the Fern Flora of Thannamandi District Rajouri, Jammu & Kashmir, India. Indian Forester, 140(12), pp.1235–1244. doi: 10.36808/if/2014/v140i12/55290

Böhnert, T. et al., 2016. Effects of land-use change on vascular epiphyte diversity in Sumatra (Indonesia). Biological Conservation, 202, pp.20–29. doi: 10.1016/j.biocon.2016.08.008

Brown, C. & Grant, M., 2005. Biodiversity and human health: What role for nature in healthy urban planning? Built Environment, 31(4), pp.326–338. doi: 10.2148/benv.2005.31.4.326

Budiana, A. & Sukarsa, 2012. Diversitas tumbuhan paku epifit di Kebun Raya Baturaden lereng selatan G. Slamet. In Ekologi Gunung Slamet. Jakarta: LIPI Press, pp.71–79.

Dassler, C. & Farrar, D., 2001. Significance of gametophyte form in long-distance colonization by tropical, epiphytic ferns. Brittonia, 53(2), pp.352–369. doi: 10.1007/BF02812705

Desmet, P. & Cowling, R., 2004. Using the species–area relationship to set baseline targets for conservation. Ecology and Society, 9(2), 11.

Gessesse, A.A. & Melesse, A.M., 2019. Chapter 8 - Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability. Elsevier, pp.81–92. doi: 10.1016/B978-0-12-815998-9.00008-7.

Gleditsch, J.M. et al., 2023. Contemporizing island biogeography theory with anthropogenic drivers of species richness. Global Ecology and Biogeography, 32(2), pp.233–249. doi: 10.1111/geb.13623

De Groot, G.A. et al., 2012. Diverse spore rains and limited local exchange shape fern genetic diversity in a recently created habitat colonized by long-distance dispersal. Annals of Botany, 109(5), pp.965–978. doi: 10.1093/aob/mcs013.

Holttum, R.E., 1966. Flora of Malaya Volume II. Ferns of Malaya 2nd ed., Singapore: Government Printing Office.

Jannah, M., Prihanta, W. & Susetyorini, E., 2015. Identifikasi pteridophyta di Piket Nol Pronojiwo Lumajang sebagai sumber belajar biologi. JPBI (Jurnal Pendidikan Biologi Indonesia), 1(1), pp.89—98.

Johansen, B. & Tømmervik, H., 2014. The relationship between phytomass, NDVI and vegetation communities on Svalbard. International Journal of Applied Earth Observation and Geoinformation, 27, pp.20–30. doi: 10.1016/j.jag.2013.07.001

Lehnert, M. et al., 2013. Taxonomic and ecological notes on the Alsophila hornei complex (Cyatheaceae-Polypodiopsida), with the description of the new species A. phlebodes from New Guinea. Systematic Botany, 38(4), pp.875–886. doi: 10.1600/036364413X674788

MacArthur, R.H. & Wilson, E.O., 1963. An equilibrium theory of insular zoogeography. Evolution, pp.373–387.

MacArthur, Robert.H. & Wilson, E.O., 1967. The theory of island biogeography, Princeton, New Jersey: Princeton University Press.

Morajkar, S., Sajeev, S. & Hegde, S., 2015. Ferns: A Thriving Group of Urban Dwellers. Bionature, 35(1&2), pp.13-21.

Muhaimin, M., 2017. Adiantum latifolium Lam. (Pteridaceae); A newly naturalized fern in Java, Indonesia. Floribunda, 5(6), pp.220-225. doi: 10.32556/floribunda.v5i6.2017.177

Neigel, J.E., 2003. Species–area relationships and marine conservation. Ecological Applications, 13(sp1), pp.138–145. doi: 10.1890/1051-0761(2003)013[0138:SARAMC]2.0.CO;2

Oldekop, J.A. et al., 2012. Co-occurrence patterns of common and rare leaf-litter frogs, epiphytic ferns and dung beetles across a gradient of human disturbance. PLoS One, 7(6), e38922. doi: 10.1371/journal.pone.0038922

Ossola, A. & Niemelä, J., 2017. Urban biodiversity: from research to practice, London: Routledge.

Partomihardjo, T., Eizi, S. & Junichi, Y., 2004. Development and distribution of vascular epiphytes communities on the Krakatau Islands, Indonesia. South Pacific Studies, 25(1), pp.7–26.

Pau, S., Gillespie, T.W. & Wolkovich, E.M., 2012. Dissecting NDVI–species richness relationships in Hawaiian dry forests. Journal of Biogeography, 39(9), pp.1678–1686. doi: 10.1111/j.1365-2699.2012.02731.x

Praptosuwiryo, T.N., 2013. The rare pteridophytes of Mt. Slamet with three species new records for Java. Floribunda, 4(6), pp.138—146. doi: 10.32556/floribunda.v4i6.2013.103

Proctor, M.C.F., 2012. Light and desiccation responses of some Hymenophyllaceae (filmy ferns) from Trinidad, Venezuela and New Zealand: poikilohydry in a light-limited but low evaporation ecological niche. Annals of botany, 109(5), pp.1019–1026. doi: 10.1093/aob/mcs012

QGIS.org, 2023, ‘QGIS 3.10 Geographic Information System’, in QGIS, viewed 4 August 2023, from http://www.qgis.org

R Core Team, 2023, ‘R: A language and environment for statistical computing’, in R: The R Project for Statistical Computing, viewed 2 June 2023, from https://www.R-project.org/

Robinson, S.L. & Lundholm, J.T., 2012. Ecosystem services provided by urban spontaneous vegetation. Urban Ecosystems, 15, pp.545–557. doi: 10.1007/s11252-012-0225-8

Salamah, Z., Sasongko, H. & Novida, R., 2020. The Diversity of Ferns (Pteridophyta) at Pundong Japanese Cave, Bantul, Yogyakarta. Proceedings of the International Conference on Biology, Sciences and Education (ICoBioSE 2019), pp.185–191. doi: 10.2991/absr.k.200807.038

Sato, T., 1982. Phenology and wintering capacity of sporophytes and gametophytes of ferns native to Northern Japan. Oecologia, 55(1), pp.53–61. doi: 10.1007/BF00386718

Savard, J.-P.L., Clergeau, P. & Mennechez, G., 2000. Biodiversity concepts and urban ecosystems. Landscape and urban planning, 48(3–4), pp.131–142. doi: 10.1016/S0169-2046(00)00037-2

Sedayu, A., Saraswati, R.A. & Astuti, Y.P., 2022. Light preferences in two landscape managements and ontogenic light requirements of terrestrial ferns in Kebun Raya Baturraden, Central Java. Reinwardtia, 21(1), pp.25–33. doi: 10.55981/reinwardtia.2022.4265

Seto, K.C. et al., 2004. Linking spatial patterns of bird and butterfly species richness with Landsat TM derived NDVI. International journal of remote sensing, 25(20), pp.4309–4324. doi: 10.1080/0143116042000192358

Sungkono, J., Widiawati, Y. & Chasanah, S., 2012. Persebaran jenis tumbuhan paku Dennstaedtiaceae di hutan Gunung Slamet jalur pendakian Baturraden. In Ekologi Gunung Slamet. Jakarta: LIPI Press, pp.81–87.

Taylor, T.N., Kerp, H. & Hass, H., 2005. Life history biology of early land plants: deciphering the gametophyte phase. Proceedings of the National Academy of Sciences of the United States of America, 102(16), pp.5892–5897. doi: 10.1073/pnas.0501985102

Watkins, J.E., Holbrook, N.M. & Zwieniecki, M.A., 2010. Hydraulic properties of fern sporophytes: Consequences for ecological and evolutionary diversification. American Journal of Botany, 97(12), pp.2007–2019. doi: 10.3732/ajb.1000124

Watkins, J.E.Jr. et al., 2007. Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytologist, 176, pp.708–717. doi: 10.1111/j.1469-8137.2007.02194.x

Whittaker, R.J. & Fernández-Palacios, J.M., 2007. Island biogeography: ecology, evolution, and conservation, Oxford University Press.

Williams-Linera, G., Palacios-Rios, M. & Hernández-Gómez, R., 2005. Fern richness, tree species surrogacy, and fragment complementarity in a Mexican tropical montane cloud forest. Biodiversity & Conservation, 14, pp.119–133. doi: 10.1007/s10531-005-4053-5

Yao, X. et al., 2022. How can urban parks be planned to mitigate urban heat island effect in “Furnace cities”? An accumulation perspective. Journal of Cleaner Production, 330, 129852. doi: 10.1016/j.jclepro.2021.129852



DOI: https://doi.org/10.22146/jtbb.87781

Article Metrics

Abstract views : 1741 | views : 641

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)