Chrysin Inhibits Indonesian Serotype Foot-and-Mouth-Disease Virus Replication: Insights from DFT, Molecular Docking and Dynamics Analyses
Agus Susilo(1*), Miftakhul Cahyati(2), Nurjannah Nurjannah(3), Dodyk Pranowo(4), Feri Eko Hermanto(5), Elma Putri Primandasari(6)
(1) Department of Animal Products Technology, Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia
(2) Department of Oral Medicine, Faculty of Dentistry, Universitas Brawijaya, Malang 65145, Indonesia
(3) Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang 65145, Indonesia
(4) Department of Agro-industrial Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65145, Indonesia
(5) Department of Animal Products Technology, Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia
(6) Department of Animal Products Technology, Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia
(*) Corresponding Author
Abstract
Chrysin, a predominant compound in Propolis, possesses diverse bioactivities, including antiviral properties. However, its antiviral efficacy against the Indonesian Foot-and-Mouth Disease Virus (FMDV) serotype remains unexplored. This study investigates Chrysin's inhibitory potential against FMDV Indonesian serotype by targeting the 3C Protease (3CP), a vital enzyme for viral replication. Multiple sequence alignment was used to reveal unique characteristics of the Indonesian serotype's 3CP compared to global serotypes. Density Functional Theory (DFT) calculations assessed Chrysin's interaction with 3CP based on electronegativity. Molecular docking and molecular dynamics analyses evaluated Chrysin's inhibitory activity against 3CP, using homology modeling for the Indonesian serotype's 3CP structure. Luteolin, a known FMDV 3CP inhibitor with a similar structure to Chrysin, served as a reference. Results showed distinct 3CP sequences in the Indonesian serotype compared to O serotypes and others. Chrysin exhibited potential electron-donor activity with lower HOMO and LUMO values than Luteolin, but they had similar energy gaps, i.e., 4.016 and 4.044 eV, respectively. Molecular docking indicated similar binding affinities, with Chrysin (-6.365 kcal/mol) and Luteolin (-6.864 kcal/mol) bound to active site residues. Molecular dynamics analysis demonstrated stable 3CP-Chrysin and 3CP-Luteolin complexes, with minor differences in Radius of gyration (Rg) and Root-Mean-Square Fluctuation (RMSF) below 1 Å. From the ligand stability point of view, Chrysin had comparable stability with Luteolin. However, Chrysin formed fewer hydrogen bonds and displayed greater free-binding energy than Luteolin during simulation periods. These findings suggest that Chrysin holds promise as an inhibitor of the Indonesian serotype's FMDV 3C Protease.
Keywords
Full Text:
PDFReferences
Amati, M., Stoia, S. & Baerends, E.J., 2020. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn–Sham Potential. Journal of Chemical Theory and Computation, 16(1), pp.443–452. doi: 10.1021/acs.jctc.9b00981.
Anjum, S.I. et al., 2019. Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences, 26(7), pp.1695–1703. doi: 10.1016/j.sjbs.2018.08.013.
Bálint, D. & Jäntschi, L., 2021. Comparison of Molecular Geometry Optimization Methods Based on Molecular Descriptors. Mathematics, 9(22), p.2855. doi: 10.3390/math9222855.
Carrillo, C. et al., 2005. Comparative genomics of foot-and-mouth disease virus. Journal of Virology, 79(10), pp.6487–6504. doi: 10.1128/JVI.79.10.6487-6504.2005.
Chen, D. et al., 2016. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), p.e1501240. doi: 10.1126/sciadv.1501240.
Curry, S. et al., 2007. Foot-and-mouth disease virus 3C protease: Recent structural and functional insights into an antiviral target. The International Journal of Biochemistry & Cell Biology, 39(1), pp.1–6. doi: 10.1016/j.biocel.2006.07.006.
Dallakyan, S. & Olson, A.J., 2015. Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, pp.243–250. doi: 10.1007/978-1-4939-2269-7_19.
Eberhardt, J. et al., 2021. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), pp.3891–3898. doi: 10.1021/acs.jcim.1c00203.
Glas, A. et al., 2017. Increased Conformational Flexibility of a Macrocycle–Receptor Complex Contributes to Reduced Dissociation Rates. Chemistry – A European Journal, 23(64), pp.16157–16161. doi: 10.1002/chem.201702776.
Grubman, M.J. & Baxt, B., 2004. Foot-and-mouth disease. Clinical Microbiology Reviews, 17(2), pp.465–493. doi: 10.1128/CMR.17.2.465-493.2004.
Hall, T.A., 1999. BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, pp.95–98.
Han, S.-C., Guo, H.-C. & Sun, S.-Q., 2015. Three-dimensional structure of foot-and-mouth disease virus and its biological functions. Archives of Virology, 160(1), pp.1–16. doi: 10.1007/s00705-014-2278-x.
Hanwell, M.D. et al., 2012. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. doi: 10.1186/1758-2946-4-17.
Hermanto, F.E. et al., 2022. On The Hypolipidemic Activity of Elicited Soybeans: Evidences Based on Computational Analysis. Indonesian Journal of Chemistry, 22(6), pp.1626–1636. doi: 10.22146/ijc.75777.
Hermanto, F.E., Rifa’i, M. & Widodo, 2019. Potential role of glyceollin as anti-metastatic agent through transforming growth factor-β receptors inhibition signaling pathways: A computational study. AIP Conference Proceedings, 2155, 020035. doi: 10.1063/1.5125539.
Hidayat, S.A. et al., 2022. Optimization of East Java Propolis Extraction as Anti SARS-Cov-2 by Molecular Docking Study. Jurnal Ilmu dan Teknologi Hasil Ternak (JITEK), 17(2), pp.123–134. doi: 10.21776/ub.jitek.2022.017.02.7.
Homeyer, N. & Gohlke, H., 2012. Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method. Molecular Informatics, 31(2), pp.114–122. doi: 10.1002/minf.201100135.
Hossen, J., Ali, M.A. & Reza, S., 2021. Theoretical investigations on the antioxidant potential of a non-phenolic compound thymoquinone: a DFT approach. Journal of Molecular Modeling, 27(6), 173. doi: 10.1007/s00894-021-04795-0.
IFRC, 2022, 'Indonesia: Foot and Mouth Disease Outbreak - Emergency Plan of Action (EPoA), DREF Operation n° MDRID024 - Indonesia' in ReliefWeb, Indonesia viewed October 24 2022, from International Federation of Red Cross And Red Crescent Societies. Available at: https://reliefweb.int/report/indonesia/indonesia-foot-and-mouth-disease-outbreak-emergency-plan-action-epoa-dref-operation-ndeg-mdrid024
Islam, N., 2015. Investigation of comparative shielding of Morin against oxidative damage by radicals: A DFT study G. Weaver, ed. Cogent Chemistry, 1(1), 1078272. doi: 10.1080/23312009.2015.1078272.
Iwakura, M. & Honda, S., 1996. Stability and reversibility of thermal denaturation are greatly improved by limiting terminal flexibility of Escherichia coli dihydrofolate reductase. Journal of Biochemistry, 119(3), pp.414–420. doi: 10.1093/oxfordjournals.jbchem.a021257.
Kamel, M., El-Sayed, A. & Castañeda Vazquez, H., 2019. Foot-and-mouth disease vaccines: recent updates and future perspectives. Archives of Virology, 164(6), pp.1501–1513. doi: 10.1007/s00705-019-04216-x.
Khan, Abbas et al., 2021. The SARS-CoV-2 B.1.618 variant slightly alters the spike RBD–ACE2 binding affinity and is an antibody escaping variant: a computational structural perspective. RSC Advances, 11(48), pp.30132–30147. doi: 10.1039/D1RA04694B.
Kim, S. et al., 2023. PubChem 2023 update. Nucleic Acids Research, 51(D1), pp.D1373–D1380. doi: 10.1093/nar/gkac956.
Krieger, E. & Vriend, G., 2015. New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), pp.996–1007. doi: 10.1002/jcc.23899.
Li, K. et al., 2021. Virus–Host Interactions in Foot-and-Mouth Disease Virus Infection. Frontiers in Immunology, 12, 571509. doi: 10.3389/fimmu.2021.571509
Maier, J.A. et al., 2015. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), pp.3696–3713. doi: 10.1021/acs.jctc.5b00255.
Majewski, M., Ruiz-Carmona, S. & Barril, X., 2019. An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry, 2, 110. doi: 10.1038/s42004-019-0205-5.
Maqsood, N. et al., 2022. DFT study of alkali and alkaline earth metal-doped benzocryptand with remarkable NLO properties. RSC Advances, 12(25), pp.16029–16045. doi: 10.1039/d2ra02209e.
Meylani, V. et al., 2023. Molecular Docking Analysis of Cinnamomum zeylanicum Phytochemicals against Secreted Aspartyl proteinase 4-6 of Candida albicans as Anti-Candidiasis Oral. Results in Chemistry, 5, 100721. doi: 10.1016/j.rechem.2022.100721.
Neese, F. et al., 2020. The ORCA quantum chemistry program package. The Journal of Chemical Physics, 152(22), 224108. doi: 10.1063/5.0004608.
van den Noort, M., de Boer, M. & Poolman, B., 2021. Stability of Ligand-induced Protein Conformation Influences Affinity in Maltose-binding Protein. Journal of Molecular Biology, 433(15), 167036. doi: 10.1016/j.jmb.2021.167036.
O’Boyle, N.M. et al., 2011. Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. doi: 10.1186/1758-2946-3-33.
Palko, N., Grishina, M. & Potemkin, V., 2021. Electron Density Analysis of SARS-CoV-2 RNA-Dependent RNA Polymerase Complexes. Molecules, 26(13), 3960. doi: 10.3390/molecules26133960.
Ramírez-Velásquez, I. et al., 2022. Shape Theory Applied to Molecular Docking and Automatic Localization of Ligand Binding Pockets in Large Proteins. ACS Omega, 7(50), pp.45991–46002. doi: 10.1021/acsomega.2c02227.
Rammohan, A. et al., 2020. In silico, in vitro antioxidant and density functional theory based structure activity relationship studies of plant polyphenolics as prominent natural antioxidants. Arabian Journal of Chemistry, 13(2), pp.3690–3701. doi: 10.1016/j.arabjc.2019.12.017.
Roqué Rosell, N.R. et al., 2014. Design and synthesis of irreversible inhibitors of foot-and-mouth disease virus 3C protease. Bioorganic & Medicinal Chemistry Letters, 24(2), pp.490–494. doi: 10.1016/j.bmcl.2013.12.045.
Rosyidi, D. et al., 2018. Perbandingan Sifat Antioksidan Propolis pada Dua Jenis Lebah (Apis mellifera dan Trigona sp.) di Mojokerto dan Batu, Jawa Timur, Indonesia. Jurnal Ilmu dan Teknologi Hasil Ternak (JITEK), 13(2), pp.108–117. doi: 10.21776/ub.jitek.2018.013.02.5.
Ryde, U. & Söderhjelm, P., 2016. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chemical Reviews, 116(9), pp.5520–5566. doi: 10.1021/acs.chemrev.5b00630.
Sargsyan, K., Grauffel, C. & Lim, C., 2017. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 13(4), pp.1518–1524. doi: 10.1021/acs.jctc.7b00028.
Siiskonen, A. & Priimagi, A., 2017. Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths. Journal of Molecular Modeling, 23(2), 50. doi: 10.1007/s00894-017-3212-4.
Song, J.-H. et al., 2015. Antiviral Activity of Chrysin Derivatives against Coxsackievirus B3 in vitro and in vivo. Biomolecules & Therapeutics, 23(5), pp.465–470. doi: 10.4062/biomolther.2015.095.
Šuran, J. et al., 2021. Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies. Molecules, 26(10), 2930. doi: 10.3390/molecules26102930.
Tesfaye, Y., Khan, F. & Gelaye, E., 2022. Vaccine matching and antigenic variability of foot-and-mouth disease virus serotypes O and A from 2018 Ethiopian isolates. International Microbiology, 25(1), pp.47–59. doi: 10.1007/s10123-021-00178-w.
Theerawatanasirikul, S. et al., 2022. Andrographolide and Deoxyandrographolide Inhibit Protease and IFN-Antagonist Activities of Foot-and-Mouth Disease Virus 3Cpro. Animals, 12(15), 1995. doi: 10.3390/ani12151995.
Theerawatanasirikul, S. et al., 2021. Natural Phytochemicals, Luteolin and Isoginkgetin, Inhibit 3C Protease and Infection of FMDV, In Silico and In Vitro. Viruses, 13(11), 2118. doi: 10.3390/v13112118.
Trott, O. & Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of computational chemistry, 31(2), pp.455–461. doi: 10.1002/jcc.21334.
Trusheva, B. et al., 2011. Indonesian propolis: chemical composition, biological activity and botanical origin. Natural Product Research, 25(6), pp.606–613. doi: 10.1080/14786419.2010.488235.
Wang, G. et al., 2015. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virology Journal, 12, 9. doi: 10.1186/s12985-015-0246-z.
Wang, J. et al., 2014. Anti-Enterovirus 71 Effects of Chrysin and Its Phosphate Ester. PLOS ONE, 9(3), e89668. doi: 10.1371/journal.pone.0089668.
Waterhouse, A. et al., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), pp.W296–W303. doi: 10.1093/nar/gky427.
Weigend, F. & Ahlrichs, R., 2005. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), pp.3297–3305. doi: 10.1039/B508541A.
Xu, Y. et al., 2021. HOMO–LUMO Gaps and Molecular Structures of Polycyclic Aromatic Hydrocarbons in Soot Formation. Frontiers in Mechanical Engineering, 7, 744001. doi: 10.3389/fmech.2021.744001
Yele, V. et al., 2021. DFT calculation, molecular docking, and molecular dynamics simulation study on substituted phenylacetamide and benzohydrazide derivatives. Journal of Molecular Modeling, 27(12), 359. doi: 10.1007/s00894-021-04987-8.
Zulhendri, F. et al., 2021. Antiviral, Antibacterial, Antifungal, and Antiparasitic Properties of Propolis: A Review. Foods, 10(6), 1360. doi: 10.3390/foods10061360.
Zunszain, P.A. et al., 2010. Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate. Journal of Molecular Biology, 395(2), pp.375–389. doi: 10.1016/j.jmb.2009.10.048.
DOI: https://doi.org/10.22146/jtbb.83140
Article Metrics
Abstract views : 973 | views : 717Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)