Growth Kinetic Modelling of Efficient Anabaena sp. Bioflocculation

https://doi.org/10.22146/jtbb.82196

Amalia Rahmawati(1), Irma Rohmawati(2), Istini Nurafifah(3), Brilian Ryan Sadewo(4), Eko Agus Suyono(5*)

(1) Faculty of Biology, Universitas Gadjah Mada, Teknika Selatan, Yogyakarta, Indonesia 55281
(2) Faculty of Biology, Universitas Gadjah Mada, Teknika Selatan, Yogyakarta, Indonesia 55281
(3) Faculty of Biology, Universitas Gadjah Mada, Teknika Selatan, Yogyakarta, Indonesia 55281
(4) Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Grafika No.2, Yogyakarta, Indonesia 55281
(5) Faculty of Biology, Universitas Gadjah Mada, Teknika Selatan, Yogyakarta, Indonesia 55281
(*) Corresponding Author

Abstract


Bioflocculation is a harvesting technique that employs flocculant agents such as bacteria and microalgae. The benefit is the absence of a chemical-added flocculant. Because bacteria need a particular medium, microalgae flocculant agents are more effective. This study used Anabaena sp. to collect fat, protein, and carbohydrates from the Glagah consortium. Three replications of those microalgae were grown in 300 ml of Bold Basal Medium culture for eight days. On the day of harvest, flocculant microalgae (Anabaena sp.) and non-flocculant microalgae (Glagah) were combined to accomplish flocculation. On the day of harvest, parameters were observed by combining Anabaena sp. with the Glagah consortium in the ratios 1: 1, 0.5: 1, and 0.25: 1. There were three times of each parameter test. Utilizing a wavelength of 750 nm, the proportion of precipitation was calculated spectrophotometrically. Bligh and Dyer were used to measure the lipids. The phenol sulfate technique was used to calculate the amount of carbohydrates. By employing the Bradford method, proteins were quantified. Biofocculation percentages and carbohydrate content were optimum on a ratio of 0.25:1. Lipid and protein content were optimum on a ratio of 1:1.


Keywords


Anabaena sp.; Bioflocculation; Glagah consortium; Hervesting; Lipid

Full Text:

PDF


References

Agustini, N.W. & Febrian, N., 2019. Hidrolisis biomassa mikroalga Porphyridium cruentum menggunakan asam (H2SO4 dan HNO3) dalam produksi bioetanol. Jurnal Kimia dan Kemasan, 41(1), pp.1-10. doi: 10.24817/jkk.v41i1.3962.

Behl, S., Donval, A. & Stibor, H., 2011. The relative importance of species diversity and functional group diversity on carbon uptake in phytoplankton communities. Limnology and Oceanography, 56(2), pp.683-694. doi: 10.4319/lo.2011.56.2.0683.

Benemann, J.R., 1997. Feasibility analysis of photobiological hydrogen production. International journal of hydrogen energy, 22(10-11), pp.979-987. doi: 10.1016/S0360-3199(96)00189-9.

Bligh, E.G. & Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), pp.911-917. doi: 10.1139/o59-099.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), pp.248-254. doi: 10.1016/0003-2697(76)90527-3.

Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology advances, 25(3), pp.294-306. doi: 10.1016/j.biotechadv.2007.02.001.

Croft, M.T. et al., 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438(7064), pp.90-93. doi: 10.1038/nature04056.

Domozych, D.S. et al., 2012. The cell walls of green algae: a journey through evolution and diversity. Frontiers in plant science, 3, 82. doi: 10.3389/fpls.2012.00082.

DuBois, M. et al., 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), pp.350-356. doi: 10.1021/ac60111a017.

Fachrullah, M.R., 2011. Laju pertumbuhan mikroalga penghasil Biofuel jenis Chlorella sp. dan Nannochloropsis sp. yang dikultivasi menggunakan air limbah hasil penambangan timah di Pulau Bangka. Institut Pertanian Bogor

Galvao, R.M. et al., 2013. Modeling of biomass production of Haematococcus pluvialis. Applied Mathematics, 4, pp.50–56, doi: 10.4236/am.2013.48A008.

Guschina, I.A. & Harwood, J.L., 2006. Lipids and lipid metabolism in eukaryotic algae. Progress in lipid research, 45(2), pp.160-186.doi: 10.1016/j.plipres.2006.01.001.

Hanief, S. et al., 2020. November. Growth kinetic of Botryococcus braunii microalgae using logistic and gompertz models. AIP Conference Proceedings, 2296(1), 02006. doi: 10.1063/5.0030459.

Hermiastuti, M., 2013. Analisis kadar protein dan identifikasi asam amino pada ikan patin (Pangasius djambal). University of Jember.

Ho, S.H. et al., 2011. Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnology advances, 29(2), pp.189-198.doi: 10.1016/j.biotechadv.2010.11.001.

Khavarpour, M. et al., 2011. Biodesulfurization of natural gas: growth kinetic evaluation. Middle-East Journal of Scientific Research, 7(1), pp.22-29.

Lam, M.K. et al., 2017. Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103, pp.197-207, doi: 10.1016/j.renene.2016.11.032.

Lee, A.K., Lewis, D.M. & Ashman, P.J., 2009. Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. Journal of Applied Phycology, 21, pp.559-567. doi: 10.1007/s10811-008-9391-8.

Levasseur, W. et al. 2020. A Review of High Value-Added Molecules Production by Microalgae in Light of the Classification. Biotechnol., 41, 107545. doi: 10.1016/j.biotechadv.2020.107545.

Markou, G. et al. 2012. An Overview of the Factors Influencing Carbohydrates Production, and of Main Bioconversion Technologies for Production of Biofuels. Appl. Microbiol. Biotechnol, 96, pp.631–645. doi: 10.1007/s00253-012-4398-0.

Novaryatiin, S., 2011. Isolasi dan karakterisasi potensi biodiesel mikroalga air tawar yang dikoleksi dari beberapa perairan umum sekitar Tangerang dan Bogor. University of Al Azhar Indonesia.

Nugroho, C., 2006. Efek Pb terhadap laju pertumbuhan dan biomassa spirulina platensis. Universitas Gadjah Mada.

Phukoetphim, N. et al., 2017. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Journal of Biotechnology, 243, pp.69-75, doi: 10.1016/j.jbiotec.2016.12.012.

Pillai, J., 1997. Flocullants and Coagulants: The Keys to Water and Waste Management in Aggregate Production, Illinois: Nalco Company.

Pradana et al., 2018. Extractive-transesterification of Microalgae Arthrospira sp. using Methanol-Hexane Mixture as Solvent. International Journal of Renewable Energy Research, 8(3), pp.1499-1507. doi: 10.20508/ijrer.v8i3.7817.g7448.

Rahmawati, A., 2020. Bioflokulasi Konsorsium Glagah dengan Anabaena sp. Universitas Gadjah Mada.

Rinanti, A. & Purwadi, R., 2018. May. Pemanfaatan Mikroalga Blooming dalam Produksi Bioethanol tanpa Proses Hidrolisis (Utilization of Blooming Microalgae in Bioethanol Production without Hydrolysis Process). Seminar Nasional Kota Berkelanjutan, 1(1), pp. 281-292.

Salim, S. et al., 2011. Harvesting of microalgae by bio-flocculation. Journal of applied phycology, 23, pp.849-855, doi: 10.1007/s10811-010-9591-x.

Saputra, D., 2013. Pengembangan Bioflokulasi Sebagai Teknik Pemanenan Mikroalga Ramah Lingkungan. Institut Pertanian Bogor.

Sathe, S., 2010. Culturing and Harvesting Microalgae for the Large- scale Production of Biodiesel. The University of Adelaide.

Huang, B. et al., 2017. Modulation of lipid biosynthesis by stress in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1728), 20160407, doi: 10.1098/rstb.2016.0407.

Suantika, G. & Pingkan, Y., 2009. Pengaruh Kepadatan Awal Inokulum terhadap Kualitas Kultur Chaetoceros gracilis (Schuut) pada Sistem Batch. Institut Teknologi Bandung.

Suyono, E.A., Nuhamunada, M. & Ramadhani, N., 2016. Lipid content from monoculture of microalgae Chlorella zofingiensis Dönz and mixed culture of Glagah isolate in laboratory scale and raceway pond for biodiesel production. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 18(1), pp.101-106.

Suyono, E.A., Fahrunnida, N.S. & Utama, I.V., 2016. Identification of microalgae species and lipid profiling of Glagah consortium for biodiesel development from local marine resource. Journal of Engineering and Applied Sciences, 11(16), pp.9970-9973.

Tiwari, O.N. et al., 2015. Characterization and optimization of bioflocculant exopolysaccharide production by cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in culture conditions. Applied biochemistry and biotechnology, 176, pp.1950-1963. doi: 10.1007/s12010-015-1691-2.

Yang, J.S. et al., 2011. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technology, 102(3), pp.3077-3082, doi: 10.1016/j.biortech.2010.10.049.

Yen, H.W. et al., 2013. Microalgae-based biorefinery–from biofuels to natural products. Bioresource technology, 135, pp.166-174, doi: https: 10.1016/j.biortech.2012.10.099.



DOI: https://doi.org/10.22146/jtbb.82196

Article Metrics

Abstract views : 593 | views : 346

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)