Biostratigraphy and Climate Change in the Late Miocene Age Based on Foraminifera in the Oyo Formation, Oyo River Section, Gunung Kidul, Yogyakarta

https://doi.org/10.22146/jtbb.81769

Adesti Audina Ulfah(1*), Akmaluddin Akmaluddin(2), Didit Hadi Barianto(3)

(1) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika Bulaksumur No.2, Sleman, Yogyakarta 55284
(2) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika Bulaksumur No.2, Sleman, Yogyakarta 55284
(3) Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika Bulaksumur No.2, Sleman, Yogyakarta 55284
(*) Corresponding Author

Abstract


The date of the paleoclimate event was ascertained using a biostratigraphic analysis. The thickness of the Oyo Formation was measured using measurements with a Jacob stick method, yielding a thickness of 80.8 meters and 23 rock samples. In the Southern Mountains Zone,  new result of the age of the upper part of the Oyo Formation by biostratigraphy investigation of the hill Late Miocene (9.79 Ma to 5.78 Ma). Biostratigraphic investigation in the Oyo River revealed 28 species and 9 genera, with two datums. The study area was classified into three biozonations based on the datum found Globorotalia acostaensis/M13a/N16 zone, the lower Globorotalia plesiotumida/M13b/N17 zone, and the upper Globigerinoides conglobatus/M14/N17 zone. The results of a paleoclimate analysis on the Oyo River Section show a general cooling tendency in the study area. Seven paleoclimate zones can be determined from these trends consisting of four warm and three cold zones. Zone I (warm), zone II (cold), zone III (warm), and zone IV (cold) have the coldest peak in the study region in 8.3 Ma, zone V (warm), and zone VI (cold), followed by zone VII (warm). Based on the correlation with other studies (South China Sea, Pacific Ocean, Oyo River, Ngalang River, and Ngioro Section), paleoclimate events in the study area occur globally.

 


Keywords


Paleoclimate, Foraminifera, Biostratigraphy, Oyo Formation, Late Miocene

Full Text:

PDF


References

Akmaluddin et al., 2010. Miocene warm tropical climate: Evidence based on oxygen isotope in central java, Indonesia. World Academy of Science, Engineering and Technology., 71(11), pp.66–70. doi: 10.5281/zenodo.1063224

Akmaluddin, 2012. Nannofossils Biostratigraphy Of Miocene Sequences In Southern Mountains, Central Java, Indonesia. Prosiding Seminar Nasional Kebumian, (5), p.11.

Akmaluddin, A., Agustin, M.V. & Kurniawan A.M., 2019. Stratigraphy and Foraminiferal Biostratigraphy of Sentolo Formation in Sedayu Area: Local Unconformity Identification in Early Pliocene. Journal of Applied Geology., 3(2), pp.32. doi: 10.22146/jag.48596.

Badan Informasi Geospasial, 2017. Ina Geospasial. viewed 20 October 2021, from https://tanahair.indonesia.go.id/portal-web

Bolli, H.M. et al., 1989. Plankton stratigraphy: volume 1, planktonic foraminifera, calcareous nannofossils and calpionellida (Vol. 1), Cambridge: Cambridge University Press.

Bicchi, E., Ferrero, E. & Malgorzata G., 2003. Palaeoclimatic interpretation based on Middle Miocene planktonic Foraminifera: The Silesia Basin (Paratethys) and Monferrato (Tethys) records. Palaeogeography, Palaeoclimatology, Palaeoecology., 196(3–4), pp.265–303. doi: 10.1016/S0031-0182(03)00368-7.

Billups, K., 2002. Late Miocene through early Pliocene deep water circulation and climate change viewed from the sub-Antarctic South Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology., 185(3–4), pp.287–307. doi: 10.1016/S0031-0182(02)00340-1.

Blow, W. H., 1969. Late Middle Eocene to Recent Planktonic Foraminiferal Biostratigraphy. Proceedings of the First International Conference on Planktic Microfossils, Micropaleontology (Geneva, 1967), 1(1), pp. 199-422.

Choiriah, S.T. & Prasetyadi, 2020. Paleotemperature Interpretation Based On Calcareous Nannoplankton Of Kedung Sumber River Section, Soko. Prosiding SEMNAS LPPM., 2(1), pp.75–83.

Holbourn et al., 2018. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nature Communications, 9(1), pp.1-13. doi: 10.1038/s41467-018-03950-1.

Jenkins, D.G., 1967. Recent Distribution, Origin, and Coiling Ratio Changes in Globorotalia pachyderma (Ehrenberg). Micropaleontology, 13(2), pp.195. doi: 10.2307/1484670.

Purbantoro, R., Aini, S.N. & Rizqi, A.H.F., 2020. Konfigurasi Stratigrafi Batas Formasi Sambipitu Dan Oyo Di Jalan Ngalang - Gading, Kecamatan Gedangsari - Playen, Gunung Kidul. GEODA, 1(2), pp.81–94.

Rachmadhan, H.D., 2019. Biostratigrafi dan Paleoklimat Menggunakan Foraminifera Kecil, Pada Jalur Ngioro Di Cekungan Rembang. Universitas Gadjah Mada.

Rousselle et al., 2013. Changes in sea-surface conditions in the Equatorial Pacific during the middle Miocene-Pliocene as inferred from coccolith geochemistry. Earth and Planetary Science Letters, 361(4l), pp.412–421. doi: 10.1016/j.epsl.2012.11.003.

Surono, Sudarno, I. & Toha, B., 1992. Peta geologi lembar Surakarta-Giritontro, Jawa, Bandung: Pusat Peneliti dan Pengembangan Geologi.

Surono, 2009. Litostratigrafi Pegunungan Selatan Bagian Timur Daerah Istimewa Yogyakarta dan Jawa Tengah. Jurnal Geologi dan Sumberdaya Mineral, 19(3), pp.209–221.

Van Gorsel, J.T., & Troelstra, S.R., 1981. Late Neogene planktonic foraminiferal biostratigraphy and climatostratigraphy of the Solo River section (Java, Indonesia). Marine Micropaleontology, 6(2), pp.183–209. doi: 10.1016/0377-8398(81)90005-0.

Wade et al., 2011. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews, 104(1–3), pp.111–142. doi: 10.1016/j.earscirev.2010.09.003.

Wilson, M.E.J., 2008. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 265(3–4), pp.262–274. doi: 10.1016/j.palaeo.2008.05.012.

Zachos et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517), pp.686-693. doi: 10.1126/science.1059412.



DOI: https://doi.org/10.22146/jtbb.81769

Article Metrics

Abstract views : 1246 | views : 1316

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)