Herbaceous Diversity in the Gumuk Ecosystem in Ledokombo District-Jember Regency with Varied Land Use Type


Wiwin Maisyaroh(1*), Luchman Hakim(2), Sudarto Sudarto(3), Jati Batoro(4)

(1) Departement of Biology Education, FTIK UIN KHAS, Jember
(2) Biology Departement, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang
(3) Departement of Soil Science, Faculty of Agriculture, Brawijaya University, Malang
(4) Biology Departement, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang
(*) Corresponding Author


Gumuk is a unique landscape in Jember Regency resulting from the eruption of Mount Raung that can provide ecosystem services through its ecological functions. Increased mining activity in Gumuk and land-use changes can lead to a decline in biodiversity and affect ecosystem services. This study aims to determine the diversity of herbaceous in the Gumuk ecosystem. Conducted in January - March 2021 in Ledokombo District, Jember Regency. The spatial distribution of Gumuk was carried out using GIS. Herbaceous sampling was carried out using 2x2 plots on three types of Gumuk utilisation, namely mixed gardens, sand mining, and stone mining. The results showed that there were 136 Gumuk in Ledokombo District. One hundred twenty herbaceous species (49 families) were found in all types of Gumuk. Mixed gardens have the highest species diversity (109 species, 49 families) compared to other types. Digitaria sanguinalis (L.) Scop. has high dominance in all types. Species dominance showed a moderate category for all types of Gumuk (D = 0.07). Community complexity in all types was in the high class (D' = 0.90) and species diversity was in the high class (H’ = 3.25). Evenness index € was different in the three types of Gumuk; in mixed gardens, the evenness of species was lower (0.23) than the other two types.



herbaceous, diversity, gumuk ecosystem, land use

Full Text:



Abidin, Z. et al., 2020. Refugia effect on arthropods in an organic paddy field in Malang District East Java Indonesia. Biodiversitas, 21(4), pp.1415-1421. doi: 10.13057/biodiv/d210420

Becker, C.A. & Brink, B., 1965. Flora of Java (Spermatophytes only) Volume II. Groningen, Nordhoff.

Bemmelen, R.W.V., 1949. The Geology of Indonesia Vol. IA: General Geology of Indonesia and Adjacent Archipelagos. Government Printing Office, The Hague, pp.545-657.

Conrad, O. et al., 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, pp.1991-2007. doi: 10.5194/gmd-8-1991-2015

da Silva, I.C.B. et al., 2020. Spatial variation of herbaceous cover species community in Cu-contaminated vineyards in Pampa biome. Environmental Science and Pollution Research International, 27(12), pp.13348–13359. doi: 10.1007/s11356-020-07851-zs

Dematteis, B., Maria, S.P. & Juan, P.C., 2019. The Evolution of dispersal traits based on on diaspore features in South American populations of Senecio madagascariensis (Asteraceae). Australian Journal of Botany, 67(4), pp.358-366. doi: 10.1071/BT18177

Fachrul, M.F., 2007. Metode sampling bioekologi. Bumi Aksara, Jakarta.

Garcia-Oliveira P. et al., 2021. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food & Function, 12(7), pp.2850-2873. doi: 10.1039/d0fo03433a.

Gustafson, E.J., 2002. Simulating Changes in Landscape Pattern, in: S.E. Gergel and M.G. Turner (Eds.), Learning Landscape Ecology: a Practical Guide to Concept and Techniques. Springer, Chapter 5. pp. 49-61

Hakim, L., 2015. Rempah dan herba kebun pekarangan rumah masyarakat: Keragaman, Sumber Fitofarmaka dan Wisata Kesehatan-kebugaran. Dandra Pustaka Indonesia, Yogyakarta.

Hammer, Ø., Harper, D.A.T. & Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. http://palaeo- electronica.org/2001_1/past/issue1_01.htm

Hang, L., 2020. Melihat Kembali Strategi Komunitas Tanoker. Buletin Tanoker, VI edition, Jember.

Hasan, S.S. et al., 2020. Impact of land-use change on ecosystem services: A review. Enviromental Development, 34, 100527. doi: 10.1016/j.envdev.2020.100527.

Horvath, Z., 2019. Habitat Loss Over Six Decades Accelerates Regional and Local Biodiversity Loss Via Changing Landscape Connectance. Ecology Letters, 22, pp.1019–1027. doi: 10.1111/ele.13260

Ikhsan, F.A. et al., 2019. The hazard of change landscape and hydrogeology zone south karst mountain impact natural and human activity in Region Jember. IOP Conference Series: Earth and Environment Science, 243, 012036. doi: 10.1088/1755-1315/243/1/012036

Indrawan, M., Primack, R.B., Supriatna, J., 2007. Biologi Konservasi. Yayasan Obor Indonesia, Jakarta.

Irakiza, R. et al., 2022. Environmental and Management Factors That Influence Commelina Species in Selected Agro-Ecological Zones in Western Kenya. American Journal of Plant Sciences, 13, pp.884-911. doi: 10.4236/ajps.2022.136059

Jhariya, M.K. & Singh L., 2021. Herbaceous diversity and biomass under diferent fire regimes in a seasonally dry forest ecosystem. Environment, Development and Sustainability, Springer, 23, 2021, pp.6800–6818. doi: 10.1007/s10668-020-00892-x

Jones, E.A.L., Contreras, D.J. & Everman, W.J., 2021. Chapter 9 - Digitaria ciliaris, Digitaria ischaemum, and Digitaria sanguinalis, In: Chauhan BS (Ed.). Biology and Manajement of Problematic crop weed species, pp.173-195. doi: 10.1016/B978-0-12-822917-0.00014-8

Kanupriya et al., 2021. Medicinal potential of Digitaria: an overview. Journal of Pharmacognosy and Phytochemistry, 10(1), pp.1717-1719.

Kermavnar, J. et al., 2021. Post-harvest forest herb layer demography: general patterns are driven by pre-disturbance conditions. Forest Ecology and Management, 491, 119121. doi: 10.1016/j.foreco.2021.119121

Khan, N. et al., 2020. Herbaceous dynamics and CO2 mitigation in an urban setup—a case study from Chhattisgarh India. Environmental Science and Pollution Research, 27, pp.2881–2897. doi: 10.1007/s11356-019-07182-8

Kurniawan, B., Purnomo & R.S. Kasiamdari, 2022. Diversity, Abundance, and Traditional Uses of Asteraceae Species in Mount Bisma, Dieng Plateu, kejajar Wonosobo Central Java. Journal of Tropical Biodiversity and Biotechnology, 7(1), jtbb66953. doi: 10.22146/jtbb.66953.

La Rosa, A. et al., 2021. Ethnobotany of the Aegadian Islands: safeguarding biocultural refugia in the Mediterranean. Journal of Ethnobiology and Ethnomedicine, 17, 47. doi: 10.1186/s13002-021-00470-z

Magurran, A.E., 1988. Ecological Diversity and Its Measurement. Princeton University Press, New Jersey, 1988, pp.1-47.

Maisyaroh, W., 2014. Pemanfaatan tumbuhan liar dalam pengendalian hayati. UB Press, 2014.

Maisyaroh, W. et al., 2021. Bird Diversity in the Gumuk Ecosystem in Jember. IOP Conference Series: Earth and Environmental Science, 886, 012046. doi: 10.1088/1755-1315/886/1/012046

Mao, R. et al., 2022. Wind dispersal of seeds of Parthenium hysterophorus L. (Asteraceae) contributes to its steady invasion and spread. Austral Ecology: A Journal of Ecology in the Southern Hemisphere, 47(4), pp.791-803. doi: 10.1111/aec.13159

Michel, J., Abd Rani, N.Z. & Husain, K., 2020. A review on the potensial use medicinal plant from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Frontiers in Pharmacology, 11, 852. doi: 10.3389/fphar.2020.00852

Mueller-Dombois, D. & Ellenberg, H., 1974. Aims and Methods of Vegetation Ecology. John Willey and Sons, New York.

Newbold, T. et al., 2020. Global effects of land use on biodiversity differ among functional groups. Functional Ecology, 34(3), pp.684-693. doi: 10.1111/1365-2435.13500

Odum, E.P., 1971. Fundamental of Ecology, Ed. 3. Oxford University Press, New York.

Pearson, S.C., 2022. Lanscape patterns from organism- based perspectives, In: Gergel SE, Turner MG (Eds.). Learning Landscape Ecology (A Practical Guide to Concepts and Technique). Springer- Verlag, New York. pp.187-198.

Saini, I., Chauhan, J. & Kaushik, P., 2020. Medicinal value of domiciliary ornamental plants of the Asteraceae family. Journal of Young Pharmacists, 12(1), pp.3-10. doi: 10.5530/jyp.2020.12.2

Saripah, B. et al., 2020. Zingiberaceae essential oils as a potential biopesticide for cocoa pod borer, Conopomorpha cramerella Snellen, In: Niogret J, Sanchez V, Marelli J-P (Eds.). Proceedings of an Asia-Pacifc Regional Cocoa IPM Symposium, Australian Centre for International Agricultural Research, Canberra, pp.35-40.

Solikhatun, I., Maridi & Budiastuti S., 2019. Analisis vegetasi penutup lantai (Lower Crop Community- LCC) di kawasan sabuk hijau Waduk Serbaguna Wonogiri. Seminar Nasional Pendidikan Biologi dan Saintek (SNPBS) ke-IV, pp.354-363.

Sutriono, Purba E. & Marheni, 2019. Insect management with refugia plant in upland rice (Oryza sativa L.). IOP Conference Series: Earth and Environmental Science, 260, p. 012138. doi: 10.1088/1755-1315/260/1/012138

Tongo, I., et al., 2021. Levels, bioaccumulation and biomagnifcation of pesticide residues in a tropical freshwater food web. International Journal of Environmental Science and Technology, 19(3), pp.1467-1482. doi: 10.1007/s13762-021-03212-6

Turner, M.G., Robert, H.G. & Robert, V.O., 2001. Landscape Ecology in Theory and Practice: Pattern and Process. Springer-Verlag: New York.

Van Steenis, C.G.G.J., 2006. Flora Pegunungan Jawa. LIPI Press, Jakarta.

Wijana, N., 2014. Metode analisis vegetasi. Plantaxia, Yogyakarta.

Zuidam, R.A.V. & Cancelado, F.I.V.Z., 1979. ITC Textbook of Photo-Interpretation, Vol. VII, Use of Aerial Detection in Geomorphology and Geographical Landscape Analysis, Chapter 6, in Terrain Analysis and Classification Using Aerial Photographs: a Geomorphological Approach. International Institute for Aerial Survei and Earth Science (ITC).

DOI: https://doi.org/10.22146/jtbb.77888

Article Metrics

Abstract views : 464 | views : 271


  • There are currently no refbacks.

Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)