Extremophilic Cellulases: A Comprehensive Review
Subham Mohanta(1), Megha Bahuguna(2), John David Baley(3), Shivika Sharma(4), Vikas Sharma(5*)
(1) Department of Molecular Biology & Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-Jalandhar, Punjab, India.
(2) Department of Molecular Biology & Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-Jalandhar, Punjab, India.
(3) Department of Molecular Biology & Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-Jalandhar, Punjab, India.
(4) Department of Molecular Biology & Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-Jalandhar, Punjab, India.
(5) Department of Molecular Biology & Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-Jalandhar, Punjab, India.
(*) Corresponding Author
Abstract
Microbial cellulases are an important industrial enzyme having diverse applications in biotechnology, environmental challenges, industrial products and processes. Extremophiles like thermophillic bacteria are a good source of industrially important cellulases as these can withstand industrially rigorous procedures like paper deinking, fabric material softening, bio stoning, paper and pulp, biopolishing cloth material, animal feed and juice. Identification of novel cellulases or improving them through biotechnological interventions has remained a challenge for researchers. Genetic manipulation of thermophilic bacteria for increased cellulase production or synthetic biology approaches for cellulase gene/gene cluster extraction from thermophilic bacteria and expression in appropriate hosts for improved cellulase synthesis. The classic and high-throughput technologies like genomics, metagenomics and bioinformatics could be exploited to isolate cellulase genes from a variety of thermophilic bacteria and further processing. Keeping in view the ultimate requirement of extremophilic cellulases in industries, present study is a compilation of various aspects related to extremophilic cellulases their sources, production, biotechnological interventions and challenges.
Keywords
Full Text:
PDFReferences
Arora, N.K. & Panosyan, H., 2019. Extremophiles: applications and roles in environmental sustainability. Environmental Sustainability, 2(3), pp.217-218. doi: 10.1007/s42398-019-00082-0.
Antranikian, G., & Egorova, K., 2007. Extremophiles, a unique resource of biocatalysts for industrial biotechnology. Physiology and biochemistry of extremophiles., pp.359-406. doi: 10.1128/9781555813.ch27.
Berlemont. R. & Gerday, C., 2011. Comprehensive Biotechnology (Second Edition). UK: Pergamon Press Inc.
Babu, P., Chandel, A.K. & Singh, O.V., 2015. Extremophiles and their applications in medical processes. New York, NY: Springer International Publishing. pp.25-35.
Cavicchioli, R. et al., 2002. Low-temperature extremophiles and their applications. Current opinion in Biotechnology, 13(3), pp.253-261. doi: 10.1016/s0958-1669(02)00317-8
Chen, G.Q. & Jiang, X.R., 2018. Next generation industrial biotechnology based on extremophilic bacteria. Current opinion in Biotechnology, 50, pp.94-100. doi: 10.1016/j.copbio.2017.11.016
Coker J.A., 2016. Extremophiles and biotechnology: current uses and prospects. F1000Research, 5. doi: 10.12688/f1000research.7432.1
Canganella, F. & Wiegel, J., 2011. Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften, 98(4), pp.253-279. doi: 10.1007/s00114-011-0775-2
Charlesworth, J. & Burns, B.P., 2016. Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiology, 2(3), pp.251-261. doi: 10.3934/microbiol.2016.3.251
Dos Reis, L. et al., 2013. Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresource technology, 146, pp.597-603. doi: 10.1016/j.biortech.2013.07.124
Dalmaso, G.Z.L., Ferreira, D. & Vermelho, A.B., 2015. Marine extremophiles: a source of hydrolases for biotechnological applications. Marine drugs, 13(4), pp.1925-1965. doi: 10.3390/md13041925
Demirjian, D.C., Morís-Varas, F. & Cassidy, C.S., 2001. Enzymes from extremophiles. Current opinion in Chemical biology, 5(2), pp.144-151. doi: 10.1016/s1367-5931(00)00183-6
Dumorné, K. et al., 2017. Extremozymes: A Potential Source for Industrial Applications. Journal of Microbiology and Biotechnology, 27(4), pp.649–659. doi: 10.4014/jmb.1611.11006.
Elleuche, S. et al., 2014. Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Current opinion in Biotechnology, 29, pp.116-123. doi: 10.1016/j.copbio.2014.04.003
Gomes, J. & Steiner, W., 2004. The biocatalytic potential of extremophiles and extremozymes. Food technology and Biotechnology, 42(4), pp.223-225.
González-González, R., Fucinos, P. & Rúa, M.L., 2017. An overview on extremophilic esterases. In Extremophilic enzymatic processing of lignocellulosic feedstocks to Bioenergy. Springer Cham. pp.181-204. doi: 10.1007/978-3-319-54684-1_10
Gupta, G.N. et al., 2014. Extremophiles: an overview of microorganism from extreme environment. International Journal of Agriculture, Environment and Biotechnology, 7(2), pp.371-380.
Herbert, R. A., 1992. A perspective on the biotechnological potential of extremophiles. Trends in Biotechnology., 10, pp.395-402. doi: 10.1016/0167-7799(92)90282-z
Herbert, R.A. & Sharp, R.J., 1992. Molecular biology and biotechnology of extremophiles. Glasgow: Blackie.
Irwin, J.A., 2010. Extremophiles and their application to veterinary medicine. Environmental technology, 31(8-9), pp.857-869. doi: 10.1080/09593330.2010.484073.
Jayasekara, S., & Ratnayake, R., 2019. Microbial cellulases: an overview and applications. In Cellulose. doi: 10.5772/intechopen.84531
Jorquera, M.A., Graether, S.P. & Maruyama, F., 2019. Bioprospecting and biotechnology of extremophiles. Frontiers in Bioengineering and Biotechnology, 7, 204.
Karan, R., Capes, M.D. & Das Sarma, S., 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquatic biosystems, 8(1), pp.1-15. doi: 10.1186/2046-9063-8-4
Karlsson, J. et al., 2002. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers: Original Research on Biomolecules, 63(1), pp.32-40.
Kaunietis, A. et al., 2019. Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nature communications, 10(1), 1-12. doi: 10.1038/s41467-019-09065-5.
Kuhad, R.C., Gupta, R. & Singh, A., 2011. Microbial cellulases and their industrial applications. Enzyme research, 2011, 280696. doi: 10.4061/2011/280696.
Kvesitadze, G., 2017, Cellulases from Extremophiles, Durmishidze Institute of Biochemistry and Biotechnology of Agricultural University of Georgia, Goergia USA.
Li, Duo-Chuan, Li, An-Na & Papageorgiou, Anastassios., 2011. Cellulases from Thermophilic Fungi: Recent Insights and Biotechnological Potential. Enzyme research, 308730. doi: 10.4061/2011/308730.
Ludlow, J.M., & Clark, D.S., 1991. Engineering considerations for the application of extremophiles in biotechnology. Critical reviews in Biotechnology, 10(4), pp321-345. doi: 10.3109/07388559109038214
Lynd, L.R. et al., 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Review, 66(4), pp.739. doi: 10.1128/MMBR.66.3.506-577.2002
Merino, N. et al., 2019. Living at the extremes: extremophiles and the limits of life in a planetary context. Frontiers in Microbiology, 10, pp.780. doi: 10.3389/fmicb.2019.00780. eCollection 2019
Mrudula, S. & Murugammal, R., 2011. Production of cellulase by Aspergillus niger under submerged and solid-state fermentation using coir waste as a substrate. Brazilian Journal of Microbiology, 42(3), pp.1119-1127. doi: 10.1590/S1517-838220110003000033.
Neifar, M. et al., 2015. Extremophiles as source of novel bioactive compounds with industrial potential. Biotechnology of bioactive compounds: sources and applications. Wiley, Hoboken, pp.245-268. doi: 10.1002/9781118733103.ch10
Nies, D.H., 2000. Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles., 4(2), pp.77-82. doi: 10.1007/s007920050140.
Nicolaus, B., Kambourova, M. & Oner, E. T., 2010. Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environmental Technology, 31(10), pp.1145-1158. doi: 10.1080/09593330903552094
O’sullivan, A. C., 1997. Cellulose: the structure slowly unravels. Cellulose, 4(3), pp.173-207.
Patyshakuliyeva, A. et al., 2016. Improving cellulase production by Aspergillus niger using adaptive evolution. Biotechnology letters, 38(6), pp.969-974. doi: 10.1007/s10529-016-2060-0
Podar, M. & Reysenbach, A.L., 2006. New opportunities revealed by biotechnological explorations of extremophiles. Current opinion in Biotechnology, 17(3), pp.250-255. doi: 10.1016/j.copbio.2006.05.002
Raddadi, N. et al., 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied Microbiology and Biotechnology, 99(19), pp.7907-7913. doi: 10.1007/s00253-015-6874-9
Rampelotto, P.H., 2013. Extremophiles and extreme environments. Life, 3(3), pp.482-485. doi: 10.3390/life3030482
Sarmiento, F., Peralta, R. & Blamey, J.M., 2015. Cold and hot extremozymes: industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology, 3, pp.148 doi: 10.3389/fbioe.2015.00148
Schiraldi, C. & De Rosa, M., 2002. The production of biocatalysts and biomolecules from extremophiles. Trends in biotechnology, 20(12), pp.515-521. doi: 10.1016/s0167-7799(02)02073-5
Sethi, S. et al., 2013. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnology.doi: 10.5402/2013/985685
Shah, S.R., 2014. Chemistry and application of cellulase in textile wet processing. Research Journal of Engineering Sciences, 3(2), pp.1-5
Shanmugam, S. et al., 2019. Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. Bioresource technology, 279, pp.149-155. doi: 10.1016/j.biortech.2019.01.121
Shrestha, N. et al., 2018. Extremophiles for microbial-electrochemistry applications: a critical review. Bioresource technology, 255, pp.318-330. doi: 10.1016/j.biortech.2018.01.151
Sindhu, R., Binod, P. & Pandey, A., 2016. Biological pretreatment of lignocellulosic biomass–An overview. Bioresource technology, 199, pp.76-82. doi: 10.1016/j.biortech.2015.08.030
Singh, O.V., 2012. Extremophiles: sustainable resources and biotechnological implications. John Wiley & Sons.
Stetter, K.O., 1999. Extremophiles and their adaptation to hot environments. FEBS letters, 452(1-2), pp.22-25. doi: 10.1016/s0014-5793(99)00663-8
Tango, M.S.A., & Islam,M.R., 2002. Potential of extremophiles for biotechnological and petroleum applications. Energy Sources, 24(6), pp.543-559. doi: 10.1080/00908310290086554
Wang, H.C., Susko, E., & Roger, A. J., 2006. On the correlation between genomic G+ C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochemical and biophysical research communications, 342(3), pp.681-684. doi: 10.1016/j.bbrc.2006.02.037
Xia, L. & Cen, P., 1999. Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochemistry, 34(9), pp.909-912. doi:10.1016/S0032-9592(99)00015-1
Zhang, Z.J. et al., 2013. The beatability-aiding effect of Aspergillus niger crude cellulase on bleached simao pine kraft pulp and its mechanism of action. BioResources, 8(4), pp.5861-5870. doi: 10.15376/biores.8.4.5861-5870
Zhu, D. et al., 2020. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Frontiers in Bioengineering and Biotechnology, 8, pp.483
DOI: https://doi.org/10.22146/jtbb.74986
Article Metrics
Abstract views : 1719 | views : 1019Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Tropical Biodiversity and Biotechnology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editoral address:
Faculty of Biology, UGM
Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
ISSN: 2540-9581 (online)