The Effectiveness of Stingless Bees on Pollination of Bitter Melon Plants Momordica charantia L. (Cucurbitaceae)

https://doi.org/10.22146/jtbb.69124

Andi Gita Maulidyah Indraswari Suhri(1*), RC Hidayat Soesilohadi(2), Ramadhani Eka Putra(3), Rika Raffiudin(4), Hery Purnobasuki(5), Ali Agus(6), Sih Kahono(7)

(1) Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(2) Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(3) Agricultural Engineering Study Program, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
(4) Department of Biology, Faculty of Mathematics and Science, Bogor Agricultural University, Bogor 16911, Indonesia
(5) Department of Biology, Faculty of Sciences and Technology, Airlangga University, Surabaya, 60115 Indonesia
(6) Animal Science Faculty, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
(7) Research Center for Ecology and Ethnobiology, National research and Innovation Agency (BRIN), Indonesia, 16911
(*) Corresponding Author

Abstract


This study aimed to measure the effectiveness of stingless bee Tetragonula cf. biroi pollination on the fruit formation of bitter melon Momordica charantia plants. We used hoods on the observed bitter melon plants. In the first hood, stingless bees are inserted to help pollinate 100 bitter melon plants, while in the other hoods, stingless bees are not inserted so that there is no assistance in pollinating the other 100 bitter melon plants. The method used is the focal sampling method for 25 days of observation. Based on the results of the study, stingless bee pollination assistance increased the percentage of the number of flowers that became fruit by 390%, the weight of seeds/fruit by 64%, number of seeds/fruit by 260%, fruit weight by 163%, fruit diameter by 91%, and fruit length by 86%. In addition to the size of the fruit, the shape of the bitter melon pollinated by bees is standard (long and straight). In contrast, the bitter melon that does not get pollination assistance grows with a bent shape resembling the letter "C." Bitter melon is an agricultural commodity that needs pollinating agents such as stingless bees because of its monoecy.

 


Keywords


Cucurbitaceae; fruit set; pollinating agents; stingless bee; local commodities

Full Text:

PDF


References

Atmowidi, T. et al., 2007. Diversity of pollinator insects in relation to seed set of mustard (Brassica rapa L: Cruciferae). Hayati Journal of Biosciences, 14(4), pp.155-161. doi: 10.4308/hjb.14.4.155.

Azmi, W.A. et al., 2018. Effects of pollination by Indo-Malaya stingless bee (Hymenoptera: Apidae) on the quality of greenhouse-produced rockmelon. Journal of Economic Entomology, 112(1), pp.20-24. doi: 10.1093/jee/toy290.

Balina, P.K. et al., 2012. Diversity, abundance, and pollination efficiency of native bee pollinators of bitter melon (Momordica charantia L.) in India. Journal of Apicultural Research, 51(3), pp.227-231. doi: 10.3896/IBRA.1.51.3.02

Behera, T. K. 2004. Heterosis in bitter gourd. Journal of New Seeds, 6, pp.217-221.

Bisui, S. et al., 2020. Utilization of Indian Dammar Bee (Tetragonula iridipennis Smith) as a Pollinator of Bitter Gourd. Acta Agrobotanica, 73(1), pp.1-7. doi: 10.5586/aa.7316

Dafni, A., 1992. Pollination Ecology a Practical Approach, New York, US: Oxford Univ Press.

Delaplane, K. S. & Mayer, D. F., 2000. Crop Pollination by Bees, New York, US: CABI Publishing.

Depra, M. S. et al., 2014. Pollination Deficit in Open-Field Tomato Crops (Solanum lycopersicon L., Solanaceae). Journal of Pollination Ecology, 12(1), pp.1-8. doi: 10.26786/1920-7603(2014)7.

Deyto, R.C., & Cervancia, C.R., 2009. Floral biology and pollination of ampalaya (Momordica charantia L). The Philippine Agricultural Scientist, 92(1), pp.8-18.

Faheem, M. et al., 2004. Pollination ecology with special reference to insects a review. Journal of Scientific Research, 4, pp.395-409.

Food and Agricultural Organization of The United Nations, 2006. Economic Valuation of Pollination Services, Food and Agriculture Organization of the United Nations Agriculture Department, Seed and Plant Genetic Resources Division (AGPS).

Gerling, D. et al., 1989. Bionomics of the large carpenter bee Xylocopa pubescens and its implications for the evolution of sociality. Annual Review of Entomology, 2, pp. 123–128. doi: 10.1146/annurev.en.34.010189.001115

Gottlieb, D. et al., 2005. Possible foraging benefits of bimodal daily activity in ProXylocopa olivieri (Lepeletier) (Hymenoptera:Anthophoridae). Environmental Entomology, 34, pp.417-424. doi: 10.1603/0046-225X-34.2.417

Husby, J.F. et al., 2015. Pollinators May Not Limit Native Seed Set at Puget Lowland Prairie Restoration Nurseries. Journal of Pollination Ecology, 15(5), pp. 30-37. doi: 10.26786/1920-7603(2015)4

Kahriman, F. et al., 2015, ‘The Role of Artificial Pollination and Pollen Effect on Ear Development and Kernel Structure of Different Maize Genotypes’, Journal of Pollination Ecology,15(2), pp.6-14. doi: 10.26786/1920-7603(2015)1

Kishan, T.M. et al., 2017. Stingless bee Tetragonula irridipennis Smith for pollination of greenhouse cucumber. Journal of Entomology and Zoology Studies, 5(4), pp.1729-1733.

Klein, A. M. et. al., 2002. Effects of landuse intensity in tropical agroforestry systems on coffe flower-visiting and trapnesting bees and wasps. Conservation biology, 16, pp.1003-1014.

Martin, P., & Bateson, P., 1993. Measuring Behavior, Cambridge, GB: Cambridge Univ Press.

Mensah, B. A., & Kudom, A. A., 2011. Foraging Dynamics and Pollination Efficiency of Apis mellifera and Xylocopa olivacea on Luffa aegyptiaca Mill (Cucurbitaceae) in Southern Ghana. Journal of Pollination Ecology, 4(5), pp.34-38. doi: 10.26786/1920-7603(2011)6

Njoroge, G. N, & van Luijk, M. N, 2004. Momordica charantia L. In: Grubben, GJH. And Denton, OA. (eds.). PROTA 2: Vegetables/Légumes. PROTA, Wageningen, Netherlands.

Rianti, P. et al., 2010, Diversity and Efectiveness of Insect Pollinators of Jatropha curcas L. (Euphorbiaceae). Hayati Journal of Bioscience, 17(1), pp.38-42. doi: 10.4308/hjb.17.1.38

Sadeh, A. et al., 2007. The Carpenter Bee Xylocopa pubescens as an Agricultural Pollinator in Greenhouse. Apidologie, 38, pp.508-517. doi: 10.1051/apido:2007036

Subhakar, G. et al., 2011. Pollinator diversity and abundance in bitter melon Momordica charantia Linn. Pest Management in Horticultural Ecosystems, 17(1), pp.23-27.

Wayo, K. et al., 2020. Local and Landscape Compositions Influence Stingless Bee Communities and Pollination Networks in Tropical Mixed Fruit Orchards, Thailand. Diversity, 12(482), pp.1-17. doi: 10.3390/d12120482

Yao, Y. F. et al., 2006. Nectar and pollen sources for honeybee (Apis cerana cerana Fabr.) in Qinglan mangrove area, Hainan Island, China. Journal integrative plant Biology, 48(11), pp. 1266-1273. doi: 10.1111/j.1744-7909.2006.00353.x



DOI: https://doi.org/10.22146/jtbb.69124

Article Metrics

Abstract views : 1516 | views : 1213

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Journal of Tropical Biodiversity and Biotechnology

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editoral address:

Faculty of Biology, UGM

Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia

ISSN: 2540-9581 (online)