Preparasi Katalis MgO/C dari Pirolisis Polimer Berbasis Magnesium Salisilat dan Aplikasinya untuk Reaksi Transesterifikasi
Imam Prasetyo(1*), Dwiana Ayu Kiranti Nur’aeni(2), Pandu Timur Bhaskara(3)
(1) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283
(2) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283
(3) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada Jl Grafika No. 2 Kampus UGM, Yogyakarta, 55283
(*) Corresponding Author
Abstract
The objective of the study is to produce carbon-based magnesium oxide (MgO) solid base catalyst by pyrolysis of phenolic resin and to examine the material effectiveness as a catalyst for transesterification reaction. The phenolic resins were prepared by polymerization process of phenol, derivative salicylic acid (magnesium salicylate), and formaldehyde aqueous solution under acidic condition using H2SO4 as catalyst. The molar ratio of magnesium salicylate:phenol:formaldehyde was 0.33:0.67:2.80. Carbon-based magnesium oxide solid base catalyst (MgO/C) was produced from phenolic resins via physical activation process using steam at 850°C. Material was characterized using N2-sorption analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Pyrolysis process for carbon formation resulted in 75% burn-off. The specific surface area of catalyst was 494 m2/g and the presence of MgO was confirmed by XRD diffraction pattern (2θ position of 36-43°, 61-63°, dan 74-78° according to JCPDS No.89-7746) and SEM image. Characteristic comparison of MgO/C with carbon produced from phenol formaldehyde resin (without magnesium salicylate) corroborate the finding that MgO/C was achieved. The catalyst was tested for transesterification reaction between palm oil and methanol. Conversion of 28.3% was achieved at temperature of 65 °C, reactant ratio of methanol: palm oil = 6:1 and reaction time of 2.5 hours. The activation energy of 6,444 cal/mol was obtained when evaluated in the range of 55-65 °C reaction temperature.
Keywords: biodiesel; catalyst; magnesium oxide; phenolic resin; porous carbon
A B S T R A K
Tujuan penelitian ini adalah membuat katalis magnesium oksida (MgO) yang teremban dalam karbon hasil dari proses pirolisis resin fenolik dan menguji efektivitasnya sebagai katalis reaksi transesterifikasi. Resin fenolik diperoleh melalui proses polimerisasi fenol, turunan asam salisilat (magnesium salisilat), dan formaldehid dalam kondisi asam menggunakan H2SO4 sebagai katalis. Rasio mol dari magnesium salisilat:fenol:formaldehid adalah 0,33:0,67:2,80. Katalis magnesium oksida teremban pada karbon (MgO/C) diperoleh dari pirolisis resin fenolik menggunakan steam pada suhu 850°C. Material dikarakterisasi dengan N2 adsorpsi-desorpsi isotherm, X-ray diffraction (XRD) dan scanning electron microscopy (SEM). Pirolisis untuk menghasilkan karbon memiliki burn-off sekitar 75%. Hasil penelitian menunjukkan bahwa katalis MgO/C memiliki luas permukaan sekitar 494 m2/g dan keberadaan MgO dikonfirmasi dari hasil pola difraksi XRD (posisi 2θ antara 36-43°, 61-63°, dan 74-78° sesuai dengan standar JCPDS No.89-7746) dan gambar SEM. Pembandingan karakteristik MgO/C dengan karbon hasil polimer fenol formaldehid (tanpa magnesium salisilat) memperkuat kesimpulan bahwa MgO/C dapat diperoleh. Katalis yang diperoleh digunakan sebagai katalis transesterifikasi antara minyak kelapa sawit dengan metanol. Konversi reaksi sebesar 28,3% didapatkan pada suhu 65 °C dan rasio reaktan metanol:minyak kelapa sawit = 6:1 dan waktu reaksi 2,5 jam. Energi aktivasi sebesar 6.444 kal/mol diperoleh pada rentang suhu reaksi 55-65 °C.
Kata kunci: biodiesel; karbon berpori; katalis; magnesium oksida; resin fenolik
Keywords
Full Text:
PDFReferences
Ariyanto, T., 2010, Pembuatan Material Karbon Berpori dari Pirolisis Phenolic Resin sebagai Material Elektroda Superkapasitor, Tesis, Univ. Gadjah Mada, Yogyakarta.
Ariyanto, T., Prasetyo, I. and Rochmadi., 2012, Pengaruh struktur pori terhadap kapasitansi elektroda superkapasitor yang dibuat dari karbon nanopori, Reaktor, 14 (1), 25–32.
Bhaskara, P.T., 2021, Pembuatan Biodiesel Dari Minyak Kelapa Sawit Menggunakan Katalis MgO Terembankan Dalam Karbon Berbasis Polimer Magnesium Salisilat-Fenol-Formaldehid, Universitas Gadjah Mada, Yogyakarta.
Cimino, S., Apuzzo, J. and Lisi, L., 2019, MgO dispersed on activated carbon as water tolerant catalyst for the conversion of ethanol into butanol, Appl. Sci., 9, No. 1371, available at:https://doi.org/10.3390/ app9071371.
Ding, Y., Zhang, G., Wu, H., Hai, B. and Wang, L., 2001, Nanoscale magnesium hydroxide and magnesium oxide powders : Control over size , shape , and structure via hydrothermal synthesis, Chem. Mater., 13 (17), 435–440.
Glasel, J., Diao, J.Y., Feng, Z.B., Hilgart, M., Wolker, T., Su, D.S. and Etzold, B.J.M., 2015, Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction, Chem. Mater., 27 (16), 5719–5725.
Haidari, S., Kamarehie, B., Jafari, A., Birjandi, M. and Afrasyabi, S., 2016, Oxalic acid degradation from aqueous solution using ozonation process in the presence of magnesium oxide nanoparticles catalyst stabilized on activated carbon, Int. J. Environ. Health Eng., 5 (3), available at:https://doi.org/10.4103/2277-9183.196665.
Haus, A., Reitz, G., Boehmke, G. and Meister, M., 1981, Phenolic Formaldehyde-Salicylic Acid Condensation Products, United States Patent 4245083.
Natewong, P., Murakami, Y., Tani, H. and Asami, K., 2016, Effect of support material on MgO-based catalyst for production of new hydrocarbon bio-diesel, Am. Sci. J. Eng. Technol. Sci., 22 (1), 153–165.
Nur’aeni, D.A.K., 2019, Preparasi Dan Karakterisasi Katalis Komposit MgO-C Dari Pirolisis Polimer Magnesium Salicylate-Phenol-Formaldehyde : Pengaruh Rasio Reaktan, Universitas Gadjah Mada, Yogyakarta.
Pradana, Y.S., Hidayat, A., Prasetya, A. and Budiman, A., 2018, Application of coconut-shell activated carbon as heterogeneous solid catalyst for biodiesel synthesis, Defect Diffus. Forum, 382, 280–285.
Prasetyo, I., Mukti, N.I.F., Fahrurrozi, M. and Ariyanto, T., 2018, Removing ethylene by adsorption using cobalt oxide-loaded nanoporous carbon, ASEAN J. Chem. Eng., 18 (1), 9–16.
Prasetyo, I., Rochmadi, Ariyanto, T. and Yunanto, R., 2013, Simple method to produce nanoporous carbon for various applications by pyrolysis of specially synthesized phenolic resin, Indones. J. Chem., 13 (2), 95–100.
Safaei-Ghomi, J., Zahedi, S., Javid, M. and Ghasemzadeh, M., 2015, MgO Nanoparticles: an Efficient, Green and Reusable Catalyst for the One- pot Syntheses of 2,6-Dicyanoanilines and 1,3-Diarylpropyl Malononitriles under Different Conditions, J. Nanostructures, 5 (2), 153–160.
Savitri, S.D., Asri, N.P., Roesyadi, A., Budikarjono, K. and Suprapto., 2012, Kinetika Reaksi Transesetrifikasi Minyak Sawit dengan Katalis Single Promotor, Semin. Nas. Tek. Kim. Soebardjo Brotohardjono UPN “Veteran” Jawa Timur, Surabaya.
Singh, A., Aggrawal, S. and Lal, D., 2019, Effect of formaldehyde to phenol ratio in phenolic beads on pore structure, adsorption and mechanical properties of activated carbon spheres, Def. Sci. J., 69 (1), 46–52.
Siriwardane, I.W., Udangawa, R., de Silva, R.M., Kumarasinghe, A.R., Acres, R.G., Hettiarachchi, A., Amaratunga, G.A.J., et al., 2017, Synthesis and characterization of nano magnesium oxide impregnated granular activated carbon composite for H2S removal applications, Mater. Des., 136, 127–136.
Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S. and Lin, L., 2019, Catalysis in biodiesel production - A review, Clean Energy, 3 (1), 2–23.
Ustinov, E.A. and Do, D.D., 2006, Adsorption in Slit Pores and Pore-size Distribution: A Molecular Layer Structure Theory, Adsorption, 24 (1), 1–16.
DOI: https://doi.org/10.22146/jrekpros.65855
Article Metrics
Abstract views : 2842 | views : 3415Refbacks
- There are currently no refbacks.
Copyright (c) 2021 The authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.