Kinerja dan Kinetika Produksi Biohidrogen secara Batch dari Sampah Buah Melon dalam Reaktor Tangki Berpengaduk

https://doi.org/10.22146/jrekpros.33611

Febrina Sarlinda(1*), Sarto Sarto(2), Muslikhin Hidayat(3)

(1) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl. Grafika No.2 Kampus UGM, Yogyakarta, 55281
(2) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl. Grafika No.2 Kampus UGM, Yogyakarta, 55281
(3) Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada, Jl. Grafika No.2 Kampus UGM, Yogyakarta, 55281
(*) Corresponding Author

Abstract


Melon fruit waste with high sugar and water content is potential as a substrate for hydrogen production by dark fermentation. This study investigated the performance of biohydrogen production from melon fruit waste in a stirred tank reactor with initial concentration of 13100 mg sCOD/L, in room temperature, initial pH of 7 and controlling final pH at 5.5 by adding NaOH. The fermentation was carried out for 24 hours. The value of pH, volatile solid (VS), soluble chemical oxygen demand (sCOD), volatile fatty acid (VFA), biogas volume, hydrogen content, and cell concentration was analized every hour to determine the performance of reactor. Hydrogen content reached 16.20% with hydrogen production rate (HPR) of 458.12 mL/Lreactor/day in the standard temperature and pressure (STP) condition. Substrate consumption at the end of fermentation reached 24.61% of sCOD and 78.28% of VS. Metabolite products were dominated by acetate and butyrate with butyrate to acetate ratio of 7:6.  The kinetic of product formation was evaluated by the kinetic model of Gompertz. Meanwhile the kinetics of cell growth was approximated by logistics model

 

 

A B S T R A K

Sampah buah melon yang cukup melimpah dan kaya akan gula dan air sangat berpotensi sebagai substrat untuk produksi biohidrogen secara fermentasi gelap. Pada penelitian ini dipelajari kinerja produksi biohidrogen dari sampah buah melon menggunakan reaktor tangki berpengaduk. Konsentrasi awal substrat 13.100 mg sCOD/L pada suhu ruang, pH awal 7 dan dan dilakukan kontrol terhadap pH akhir fermentasi agar tidak turun lebih rendah dari pH 5,5 dengan penambahan NaOH. Fermentasi berlangsung selama 24 jam dan setiap jam dilakukan analisis terhadap pH, volatile solid (VS), soluble chemical oxygen demand (sCOD), volatile fatty acid (VFA), volume biogas, kadar hidrogen dan konsentrasi biomassa untuk mengetahui kinerja reaktor. Kadar biohidrogan yang diperoleh sebesar 16,20% dengan laju produksi hidrogen sebesar 458,12 mL/Lreaktor/hari pada keadaan STP. Konsumsi substrat pada akhir fermentasi mencapai 24,61% sCOD dan 78,28% VS. Produk metabolit dominan adalah asetat dan butirat dengan ratio butirat per asetat sebesar 1,2.  Kinetika pembentukan hidrogen dipelajari melalui model kinetika persamaan Gompertz. Sedangkan kinetika pertumbuhan sel didekati dengan model kinetika persamaan logistik.

                                                                                               


Keywords


melon fruit waste; stirred tank reactor; HPR; kinetics

Full Text:

PDF


References

Akinboni, J., and Taherzadeh, M. J., 2015, Evaluation of fermentative hydrogen production from single and mixed fruit wastes, Energies, 8(5), 4253-4272

Ameekan, Y., 2014, Pengaruh Perbedaan asal inokulum terhadap produksi hidrogen dari limbah buah melon (Cucumis melo. L) pada fermentor batch, Skripsi, Universitas Gadjah mada.

Anonim, 2017, Basic Report : Nutrient data for 09181, Melons, cantaloupe, raw, Available at: https://ndb.nal.usda.gov/ndb/foods/show/2274 (Accessed at 21 juli 2017)

Aubert, C., and Pitrat, M., 2006, Volatile compounds in the skin and pulp of Queen Anne’s pocket melon, J. Agric. Food Chem., 54(21), 8177–8182.

Balachandar, G., Khanna, N., and Das, D., 2013, Biohydrogen Production from Organic Wastes by Dark Fermentation, in Biohydrogen, Elsevier B.V., 1st edition, 103-144 (online book)

Cahyari K., Hidayat M., Sarto, Syamsiah S., 2013, Effect of initial substrate concentration on biohydrogen production from orange and melon fruit waste through dark fermentation, the 6th Regional Conf. on Chemical Eng., pp 24,

Fang, H.H.P., and Liu, H., 2002, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresour. Technol., 82, 87–93.

Fasogbon, S.K., 2015, Melon oil methyl ester : An environmentatlly friendly fuel, Journal of Natural Resources and Development, 5, 7-53.

Feng X., Wang H., Wang Y., Wang X., and Huang J., 2010, Biohydrogen production from apple pomace by anaerobic fermentation with river sludge’, Int. J. Hydrogen Energy, 35(7), 3058–3064.

Gadhamshetty V., Arudchelvam Y., Nirmalakhandan N., and Johnson D., 2010, Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model, Int. J. Hydrogen Energy, 479-490.

Ghimire A., Frunzo L., Pirozzi F., Escudie R., Lens P.N.L., and Esposito G., 2015, A review on dark fermentative biohydrogen production from organic biomass : Process parameters and use of by-products, Appl. Energy, 144, 73–95.

Khanal, S.K., Chen, W.H., Li L., and Sung S., 2004, Biological hydrogen production : Effect of pH and intermediate product, Int. J. Hydrogen Energy, 29(11), 1123-1131.

Kim D.H., Kim S.H., Jung K.W., Kim M.S., and Shin H.S., Effect of initial pH independent of operational pH on hydrogen fermentation of food waste, Bioresour. Technol., 102(18), pp. 8646–8652.

Mu Y., Wang G., and Yu H.Q., 2006, kinetic modelling of batch hydrogen production process by mixed anaerobic cultures, Bioresour. Technol., 97 (11), 1302-1307

Mullai P., and Sridevi K., 2014, Cell growth and product formation kinetic of biohydrogen production using mixed concortia by batch process, Int. J. of Chem. Tech. Research, 6 (12), 5125-5130

Nurkholis, 2017, Pengaruh organic loading rate (OLR) dan frekuensi pengumpanan pada produksi biohidrogen dari sampah buah melon (Cucumis melo l.) dengan pengumpanansecara berkala (periodic feeding) menggunakan reaktor alir pipa, Tesis, Universitas Gadjah Mada, Yogyakarta

Nathoa C., Sirisukpoca U., and Pisutpaisal N., 2014, Production of hydrogen and methane from banana peel by two phase anaerobic fermentation, Energy Procedia, 50, 702–710.

Ruggeri B., Tommasi T., and Sanfilippo S., 2013, Biohydrogen & Biomethane Through Anaerobic Digestion, Green Energy and Technology, 25-36.

Vijayaraghavan K., Ahmad D., and Soning C., 2007, Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter, Int. J. Hydrogen Energy, 32(18), 4754-4760.



DOI: https://doi.org/10.22146/jrekpros.33611

Article Metrics

Abstract views : 6398 | views : 14826

Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 The authors

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.