Relative Fitness and Feeding Capacity of Imidacloprid Resistant Nilaparvata lugens

Jesayas A. Londingkene(1*), Y. Andi Trisyono(2), Witjaksono Witjaksono(3), Edhi Martono(4)

(1) Agrotechnology Program, Faculty of Agriculture, Universitas Nusa Cendana, Jln. Adisucipto, Penfui-Kupang, NTT 85001
(2) Department of Plant Pest and Disease, Faculty of Agriculture, Universitas Gadjah Mada, Jln. Flora 1, Bulaksumur, Sleman, Yogyakarta 55281
(3) Department of Plant Pest and Disease, Faculty of Agriculture, Universitas Gadjah Mada, Jln. Flora 1, Bulaksumur, Sleman, Yogyakarta 55281
(4) Department of Plant Pest and Disease, Faculty of Agriculture, Universitas Gadjah Mada, Jln. Flora 1, Bulaksumur, Sleman, Yogyakarta 55281
(*) Corresponding Author


Imidacloprid is a neonicotinoid insecticide that is recommended for controlling Nilaparvata lugens. In Asian countries, such as, China, Vietnam, India, and Thailand, imidacloprid has caused resistance to N. lugens. Imidacloprid has also caused resistance to N. lugens based on some previous studies in Indonesia. The aim of this study was to determine the fitness and feeding capacity of imidacloprid-resistant N. lugens. The population of N. lugens used in this study had a resistance level of 50.64 times compared to the susceptible population. When the resistant and susceptible population of N. lugens did not receive any exposure to imidacloprid, the susceptible population had better fitness than the resistance one. However, the fitness of the resistant population increased when this population was resistance which sublethal cencentration (LC50 & LC20) of imidacloprid. The increase fitness of this resistant population most likely related to the increase in feeding capacity of the resistant population when they were treated which sublethal imidacloprid. These findings suggest that the field population of N. lugens that have developed resistance would increase the probability of outbreak if they were sprayed with imidacloprid.




Imidakloprid adalah insektisida neonicotinoid yang direkomendasikan untuk mengendalikan Nilaparvata lugens. Di negara Asia, seperti, China, Vietnam, India, dan Thailand, imidakloprid telah menyebabkan resistensi terhadap N. lugens. Di Indonesia, berdasarkan beberapa penelitian sebelumnya dilaporkan imidakloprid juga menyebabkan resistensi terhadap N. lugens. Tujuan penelitian ini untuk mengetahui kebugaran relatif dan kemampuan makan N. lugens resisten terhadap imidakloprid. Populasi N. lugens yang digunakan dalam penelitian ini mempunyai tingkat resistensi 50,64 kali dibandingkan dengan populasi peka. N. lugens populasi resisten dan peka apabila tidak dipapar dengan imidakloprid, populasi peka mempunyai kebugaran lebih baik dari pada resisten, namun kebugaran dari N. lugens populasi resisten meningkat ketika populasi tersebut dipapar dengan imidakloprid konsentrasi subletaal (LC50 & LC20). Peningkatan kebugaran populasi N. lugens resisten diduga terkait dengan peningkatan kemampuan makan akibat dipapar lagi dengan imidakloprid subletal. Hasil penelitian ini menunjukkan bahwa ledakan N. lugens akan terjadi, apabila populasi N. lugens yang telah resisten terhadap imidakloprid dipapar lagi dengan imidakloprid.



feeding capacity; imidacloprid; imidakloprid; kebugaran relatif; kemampuan makan; Nilaparvata lugens; relative fitness; resistance; resisten

Full Text:



Abbas, N., S.A. Shad, & M. Razaq. 2012. Fitness Cost, Cross Resistance and Realized Heritability of Resistance to Imidacloprid in Spodoptera litura (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 103: 181–188.

Bao, H., S. Liu, J. Gu, X. Wang, X. Liang, & Z. Liu. 2009. Sublethal Effects of Four Insecticides on the Reproduction and Wing Formation of Brown Planthopper, Nilaparvata lugens. Pest Management Science 65: 170–174.

Basit, M., A.H. Sayyed, S. Saeed, & M.A. Saleem. 2012. Lack of Fitness Costs Associated with Acetamiprid Resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Economic Entomology 105: 1401–1406.

Bass, C., I. Denholm, M.S. Williamson, & R. Nauen. 2015. The Global Status of Insect Resistance to Neonicotinoid Insecticides. Pesticide Biochemistry and Physiology 121: 78–87.

Botrell, D.G. & K.G. Schoenly. 2012. Resurrecting the Ghost of Green Revolutions Past: the Brown Planthopper as a Recurring Threat to High Yielding Rice Production in Tropical Asia. Journal of Asia-Pacific Entomology 15: 122–140.

Catindig, J.L.A., G.S. Arida, S.E. Baehaki, J.S. Bentur, L.Q. Cuong, M. Norowi, W. Rattanakarn, W. Sriratanasak, J. Xia, & Z. Lu. 2009. Situation of Planthoppers in Asia, p. 191–220. In K.L. Heong & B. Hardy (eds), Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia. IRRI, Philippines.

Chelliah, S. & E.A. Heindrichs. 1984. Factor Contributing to Brown Planthopper Resurgence, p. 107–115. In M.S. Swaminathan (ed.), Judicious and Efficient Use of Insecticides on Rice. IRRI, Philippines.

Chen, Z., S. Bai, Z. Wang, S. Zeng, F. Zhu, J. Zhuang, R. Guo, & D. Hu. 2012. Study on Twenty-Five Percent Pymetrozine-Thiamethoxam Suspension Concentrate as an Insecticide against Rice Planthopper. African Journal of Agricultural Research 7: 4627–4633.

Cutler, G.C., K. Ramanaidu, T. Astatkie, & M.B. Isman. 2009. Green Peach Aphid, Myzuz persicae (Hemiptera: Aphididae), Reproduction during Exposure to Sublethal Concentrations of Imidacloprid and Azadirachtin. Pest Management Science 65: 205–209.

Elbert, A., M. Haas, B. Springer, W. Thielert, & R. Nauen. 2008. Applied Aspects of Neonicotinoid uses in Crop Protection. Pest Management Science 64: 1099–1105.

Elsa, R., Y. Suzuki, K. Arimura, K. Miyanoto, M. Matsumura, & T. Watanabe. 2003. Comparing Nilaparvata lugens Stal. and Sogatella furcifera (Horvath) (Homoptera: Delphacidae) Feeding Effects on Rice plant Growth Processes at the Vegetative Stage. Crop Protection 22: 967–974.

Heinrichs, E.A., S. Chelliah, S.L. Valenscia, M.B. Arceo, L.T. Fabellar, G.B. Aquino, & S. Pickin. 1981. Manual for Testing Insecticides on Rice. IRRI, Philippines. 134 p.

Herbert, D.A., & J.D. Harper. 1987. Food Consumption by Heliothis zea (Lepidoptera: Noctuidae) Larvae Intoxicated with a B–edotoxin of Bacillus thuringiensis. Journal of Economic Entomology 96: 1083–1090.

Jeschke, P. & R. Nauen. 2005. Neonicotinoid Insecticides, p. 53–105. In L.I. Gilbert, K. Iatrou, & S.S. Gill (eds.), Comprehensive Molecular Insect Science, Elsevier, Oxford, UK.

Kliot, A. & M. Ghanim. 2012. Fitness Costs Associated with Insecticide Resistance. Pest Management Science 68: 1431–1437.

Kumar, K. & R.B. Chapman. 1984. Sublethal Effects of Insecticides on the Diamondback Moth Plutella xylostella (L.). Pesticide Science 15: 344–352.

Leather, S.R. 1995. Factors Affecting Fecundity, Fertility, Oviposition, and Larviposition in Insects, p. 143–174. In S.R. Leather & J. Hardie (eds), Insect Reproduction. CRC Press, Boca Raton.

LeOra Software. 1997. POLO-PC: Probit and Logit Analysis. LeOra Software, Berkeley, CA.

Liu, Z. & Z. Han. 2006. Fitness Costs of Laboratory- Selected Imidacloprid Resistance in the Brown Planthopper, Nilaparvata lugens Stal. Pest Management Science 62: 279–282.

Liu, S.H, B.J. Yang, S. Liu, Z.P. Ding, Z.W. Liu, & J. Tang. 2012. Effects of Sublethal Dose of Imidacloprid and Pymetrozine on Relative Biological Fitness of Brown Planthopper, Nilaparvata lugens. Chinese Journal of Rice Science 26: 361–364.

Melhanah, Witjaksono, & Y.A. Trisyono, 2002. Selection of Resistance to Brown Planthopper of Fipronil Insecticide. Indonesian Journal of Plant Protection 8: 107–113.

Moriarty, F. 1969. Sublethal Effects of Siynthetic Insecticides on Insects. Biological Reviews 44: 321–357.

Ratna, Y. 2011. Mechanism of Resurgence on Rice Brown Planthopper after Deltamethrin Application Sublethal Concentrations. Dissertation. Faculty of Agriculture, Gadjah Mada University, Yogyakarta. 112 p.

Sutrisno. 1989. Study of Resistance to Brown Planthopper, Nilaparvata lugens Stal of Organophosphate and Carbamate Insecticides. Dissertation. Gadjah Mada University, Yogyakarta. 210 p.

Trisyono, Y.A. & Whalon. 1997. Fitness Cost of Resistance to Bacillus thuringiensis in Corolado Potato Beetle (Coleoptera: Crhysomelidae). Journal of Economic Entomology 90: 267–271.

Wang, A.H., J.C. Wu, Y.S. Yu, J.L. Liu, J.F. Yue, & M.Y. Wang. 2005. Selective Insecticide-Induced Stimulation on Fecundity and Biochemical Changes in Tryporyza incertulas (Lepidoptera: Pyralidae). Journal of Economic Entomology 98: 1144–1149.

Wang, Y., J. Chen, Y. C. Zhu, C. Ma, Y. Huang, & J. Shen. 2008. Susceptibility to Neonicotinoids and Risk of Resistance Development in the Brown Planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Management Science 64: 1278–1284.

Yin, J.L., H.W. Xu, J.C. Wu, F. Wang, & G.Q. Yang. 2008. Cultivar and Insecticide Applications Affect the Physiological Development of the Brown Planthopper, Nilaparvata lugens (Stal) (Hemiptera: Delphacidae). Environmental Entomology 37: 206–212.


Article Metrics

Abstract views : 2104 | views : 1377


  • There are currently no refbacks.

Copyright (c) 2017 Jurnal Perlindungan Tanaman Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Perlindungan Tanaman Indonesia ISSN 1410-1637 (print)ISSN 2548-4788 (online) is published by the Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, in collaboration with Indonesian Entomological Society (Perhimpunan Entomologi Indonesia, PEI) and Indonesian Phytopathological Society (Perhimpunan Fitopatologi Indonesia, PFI). The content of this website is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

View website statistics