Pemanfaatan Geospasial Melalui Health and Demographic Surveillance System (HDSS) pada Pasien Tuberkulosis dalam Manajemen Obat

https://doi.org/10.22146/jmpf.66692

Diah Ayu Puspandari(1*), Hermawati Setiyaningsih(2), Zafria Atsna(3), Tri Murti Andayani(4)

(1) (1) Pusat KPMAK, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada (2) Departemen Kebijakan dan Manajemen Kesehatan Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada
(2) Pusat KPMAK, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada
(3) Pusat KPMAK, Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan, Universitas Gadjah Mada
(4) Faculty of Pharmacy, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


Tuberculosis (TB) is an infectious disease that causes a high mortality rate. Currently, Indonesia is the largest contributor to TB cases in the world. In 2019, the estimated number of cases was 845,000 cases, while case enrollment was 562,000. Thus, the Gap in the Case finding is high. As a result, innovation is needed in setting strategies to develop Regulations related to the national TB program, one of which is geospatial. This study aimed to provide an overview of geospatial utilization through HDSS in tuberculosis patients about drug management. Geospatial is an epidemiological approach that can be used to determine policies in accordance with conditions in an area. The research type is a quantitative study using secondary data from the Health and Demography Surveillance System (HDSS) of Sleman in 2016 and the Integrated TB Information System (SITT) of Sleman Regency in 2016. The analysis used descriptive analysis and geospatial mapping used Stata 15 and R software. Geospatial data shows that TB cases are concentrated in densely populated areas, such as Depok, Mlati, Ngaglik, and Gamping sub-districts. In addition, geospatial shows us the distance between the distribution of cases and the availability of health service facilities (puskesmas). The spread of cases is mostly found in the area around the health facilities, and low cases are in areas far from the health facilities. This condition possibly happens because case tracking is less affordable. Knowing the number and distribution of TB cases and the distribution of health care facilities can be used as a basis in the policy-making process, planning of the need for TB drugs, drug distribution, and priority interventions for TB services in a cost-efficiency.


Keywords


Tuberculosis, TB drug, Health and Demography Surveillance System, Sleman

Full Text:

PDF


References

1. World Health Organization. Global Tuberculosis Report 2020.; 2020.

2. De Melo GC, De Oliveira ECA, Leal IB, et al. Spatial and temporal analysis of the human immunodeficiency virus (HIV) in an area of social vulnerability in northeast Brazil. Geospat Health. 2020;15(2):210-216. doi:10.4081/gh.2020.863

3. Tiwari N, Adhikari CMS, Tewari A, Kandpal V. Investigation of geo-spatial hotspots for the occurrence of tuberculosis in Almora district, India, using GIS and spatial scan statistic. Int J Health Geogr. 2006;5:1-11. doi:10.1186/1476-072X-5-33

4. Liu Y, Li X, Wang W, et al. Investigation of space-time clusters and geospatial hot spots for the occurrence of tuberculosis in Beijing. Int J Tuberc Lung Dis. 2012;16(4):486-491. doi:10.5588/ijtld.11.0255

5. Abdul Rasam AR, Mohd Shariff N, Dony JF. Geospatial-Based Model for Diagnosing Potential High-Risk Areas of Tuberculosis Disease in Malaysia. MATEC Web Conf. 2019;266:02007. doi:10.1051/matecconf/201926602007

6. Alene KA, Viney K, Moore HC, Wagaw M, Clements ACA. Spatial patterns of tuberculosis and HIV coinfection in Ethiopia. PLoS One. 2019;14(12):1-15. doi:10.1371/journal.pone.0226127

7. Gwitira I, Karumazondo N, Shekede MD, Sandy C, Siziba N, Chirenda J. Spatial patterns of pulmonary tuberculosis (TB) cases in Zimbabwe from 2015 to 2018. PLoS One. 2021;16(4 April):1-15. doi:10.1371/journal.pone.0249523

8. WHO. Maps and spatial information technologies (Geographical Information Systems) in health and environment decision-making. https://www.who.int/heli/en/. Published 2021. https://www.who.int/heli/tools/maps/en/

9. Partilla M. The Uses of Mapping in Improving Management and Outcomes of Tuberculosis Control Programs: An Overview of Available Tool. Published online 2008:18. http://www.who.int/health_mapping/en/

10. Dewi FST, Choiriyyah I, Indriyani C, et al. Designing and collecting data for a longitudinal study: the Sleman Health and Demographic Surveillance System (HDSS). Scand J Public Health. 2017;46(7):704-710. doi:10.1177/1403494817717557

11. Kemenkes P. Panduan Penggunaan SITT untuk Fasyankes. Kementrian Kesehat RI Pus Data dan Inf. 2013;53(9):1689-1699.

12. Nandita Risa Ramadhani. Evaluasi SITT di Rumah Sakit Paru Respira Yogyakarta dan Dinas Kesehatan Provinsi DIY dengan metode Technology Acceptance Model (TAM). Naskah Publ Univ Muhammadiyah Surakarta. Published online 2018:1-26.

13. Setyowati M, Prasetya J. Penilaian Pencatatan dan Pelaporan Tuberkulosis Berbasis Semar Betul (Semarang Berantas Tuberkulosis) dengan Metode Pieces di Puskesmas Kota Semarang. J Kesehat. 2020;13(2):106-118.

14. Pranda V, Andatani N. Hubungan Tingkat Pendidikan Terhadap Angka Kejadian Multidrugs Resistant Tuberculosis (MDR-TB) di RSUDZA Banda Aceh. J Penelit Nanggroe Med. 2018;1(4):7-13.

15. Absor S, Nurida A, Levani Y, Nerly WS. Hubungan Tingkat Pendidikan Dengan Kepatuhan Berobat Penderita Tb Paru Di Wilayah Kabupaten Lamongan Pada Januari 2016 – Desember 2018. Medica Arter. 2020;2(2):80. doi:10.26714/medart.2.2.2020.80-87

16. Murray AT. Advances in location modeling: GIS linkages and contributions. J Geogr Syst. 2010;12(3):335-354. doi:10.1007/s10109-009-0105-9

17. Wang F. Why public health needs GIS: a methodological overview. Ann GIS. 2020;26(1):1-12. doi:10.1080/19475683.2019.1702099

18. Gehlen M, Nicola MRC, Costa ERD, et al. Geospatial intelligence and health analitycs: Its application and utility in a city with high tuberculosis incidence in Brazil. J Infect Public Health. 2019;12(5):681-689. doi:10.1016/j.jiph.2019.03.012

19. Hwang B, Shroufi A, Gils T, et al. Stock-outs of antiretroviral and tuberculosis medicines in South Africa: A national cross-sectional survey. PLoS One. 2019;14(3):1-13. doi:10.1371/journal.pone.0212405

20. Kim D, Zhang Y, Lee CK. Understanding needs and barriers to using geospatial tools for public health policymaking in China. Geospat Health. 2018;13(1):79-85. doi:10.4081/gh.2018.594

21. Dr. Slamet M, Drg. Dyah E Mustikowati M, Dinihari DT. Pengelolaan Logistik Program Pengendalian. Kemenkes, P2P; 2014.

22. Nasution AS. Evaluasi Pengelolaan Obat Program TB di Instalasi Farmasi Dinas Kesehatan Provinsi Sumatera Utara. Perpust Univ Sumatera Utara. Published online 2020. https://library.usu.ac.id

23. Abayneh M, Hailemariam S, Asres A. Low Tuberculosis (TB) Case Detection: A Health Facility-Based Study of Possible Obstacles in Kaffa Zone, Southwest District of Ethiopia. Can J Infect Dis Med Microbiol. 2020;2020. doi:10.1155/2020/7029458

24. Tefera F, Barnabee G, Sharma A, et al. Evaluation of facility and community-based active household tuberculosis contact investigation in Ethiopia: a cross-sectional study. BMC Health Serv Res. 2019;19(1):1-9. doi:10.1186/s12913-019-4074-5

25. Kagujje M, Chilukutu L, Somwe P, et al. Active TB case finding in a high burden setting; comparison of community and facility-based strategies in Lusaka, Zambia. PLoS One. 2020;15(9 September 2020):1-12. doi:10.1371/journal.pone.0237931

26. Arini M, Setyonugroho W, Permana I, et al. The Cross-Cultural Adaptation for Assessment of Chronic Illness Care Questionnaire Into Indonesian Version. Asia-Pacific J Public Heal. 2021;33(5):627-631. doi:10.1177/10105395211018090

27. Hikma F, Amareta DI, Maharani HE. Pemetaan Persebaran Penyakit Tuberkulosis Di Kabupaten Jembertahun 2013-2015. J Manaj Inf Kesehat Indones. 2016;4(1):27-39. doi:10.33560/jmiki.v4i1.94

28. Abdul Rasam AR, Mohd Shariff N, Dony J. The Invention of Geospatial Decision Support System for Malaysian Tuberculosis Surveillance Data Management. Environ Proc J. 2020;5(SI3):269-274. doi:10.21834/ebpj.v5isi3.2564



DOI: https://doi.org/10.22146/jmpf.66692

Article Metrics

Abstract views : 1936 | views : 1480

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MANAJEMEN DAN PELAYANAN FARMASI (Journal of Management and Pharmacy Practice)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

©Jurnal Manajemen dan Pelayanan Farmasi
Faculty of Pharmacy
Universitas Gadjah Mada
Creative Commons License
View My Stats