Five Methods Comparison of 10 Years Cardiovascular Disease Risk Estimation in the Community in Sleman-Yogyakarta

Clarentia Dwivani(1*), Herlina Herlina(2), Karina Harijadi(3), Budianto Budianto(4), Rita Suhadi(5)

(1) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta
(2) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta
(3) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta
(4) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta
(5) Faculty of Pharmacy, Sanata Dharma University, Yogyakarta
(*) Corresponding Author


Cardiovascular disease is the highest cause of death with total of 17.5 million deaths in the world. Nowadays there have beenexists many methods to calculate the risk of cardiovascular disease within the next 10 years, 5 of them are Framingham Risk Score (FRS) BMI and Cholesterol, Pooled Cohort Equations (PCE), CV Risk Calculator, and Systematic Coronary Risk Evaluation (SCORE). The aim of this study waiss to compare the 5 methods of 10-year risk of cardiovascular disease based on mean values, risk categories, and statin recommendation. This observational analytic study was done with cross-sectional design. There were 169 respondents in Sleman, Yogyakarta who participated to this study. Normality of risk measurement data was performed using Kolmogorov-Smirnov test and comparative test was performed using Repeated ANOVA. Both proportion of risk categorization and statin therapy was calculated using the Marginal Homogeneity test. The average risk of  FRS (BMI and Cholesterol), PCE, CV Risk Calculator, and SCORE were 14,6±11,7% (medium risk), 13,3±11,3% (medium risk), 6,8±6,4% (medium risk), 6,8±6,4% (medium risk), and 2,6±3,5% (medium risk).  There were significant differences from the comparison between among methods on mean values and risk categories (p <0.01), except on PCE with FRS BMI (p=0.11) and PCE with CVRiskcalculator (p = 1.00). Comparison of statin therapy recommendation among FRS Cholesterol with PCE, FRS Cholesterol with SCORE, and PCE with FRS BMI methods showed significant differences (p <0.01), whereas FRS Cholesterol with FRS BMI and PCE with SCORE were not significantly different (p = 0,06 and p = 0,05).


Risiko Penyakit Kardiovaskuler; Framingham Risk Score BMI; Framingham Risk Score Cholesterol; Pooled Cohort Equations (PCE); CV Risk Calculator; Systematic Coronary Risk Estimation (SCORE)

Full Text:



1. Kementrian Kesehatan Republik Indonesia. Infodatin Situasi Kesehatan Jantung: Pusat Data dan Informasi Kementrian Kesehatan RI.

2. World Health Organization. Cardiovascular diseases (CVDs).

3. World Health Organization. Noncommunicable Diseases (NCD) Country Profiles: Indonesia. 2014:2014.

4. Suhadi R, Linawati Y, Wulandari ET, Viriginia DM, Setiawan CH. The metabolic disorders and cardiovascular risk among lower socioeconomic subjects in Yogyakarta-Indonesia. Asian J Pharm Clin Res. 2017;10(3). doi:10.22159/ajpcr.2017.v10i3.16310

5. Garg N, Muduli SK, Kapoor A, et al. Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses. Indian Heart J. 2017;69(4):458-463. doi:10.1016/j.ihj.2017.01.015

6. Rodondi N, Locatelli I, Aujesky D, et al. Framingham risk score and alternatives for prediction of coronary heart disease in older adults. PLoS One. 2012;7(3):e34287. doi:10.1371/journal.pone.0034287

7. Motamed N, Rabiee B, Perumal D, et al. Comparison of cardiovascular risk assessment tools and their guidelines in evaluation of 10-year CVD risk and preventive recommendations: A population based study. Int J Cardiol. 2017;228(2017):52-57. doi:10.1016/j.ijcard.2016.11.048

8. Anonim. Heart Risk Calculator. Published 2013.

9. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016;37(39):2999-3058. doi:10.1093/eurheartj/ehw272

10. Dinas Kesehatan Daerah Istimewa Yogyakarta. Profil Kesehatan Daerah Istimewa Yogyakarta Tahun 2013. Yogyakarta; 2013. doi:10.1017/CBO9781107415324.004

11. Algifari. Statistika Induktif Untuk Ekonomi Dan Bisnis. 3rd ed. Yogyakarta: Sekolah Tinggi Ilmu Manajemen YKPN; 2013.

12. Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1•25 million people. Lancet. 2014;383(9932):1899-1911. doi:10.1016/S0140-6736(14)60685-1

13. Grundy S, Becker D, Clark LT, et al. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation. 2002;106:3043. doi:10.1115/1.802915.ch1

14. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA Guideline on The Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A report of The American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;129(25):S1-S48. doi:10.1161/01.cir.0000437738.63853.7a

15. Selvarajah S, Kaur G, Haniff J, et al. Comparison of the Framingham Risk Score , SCORE and WHO / ISH cardiovascular risk prediction models in an Asian population. Int J Cardiol. 2014;176(1):211-218. doi:10.1016/j.ijcard.2014.07.066

16. Chia YC, Yu S, Gray W, Ching SM, Lim HM, Chinna K. Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population : a retrospective cohort study. 2015;5:1-7. doi:10.1136/bmjopen-2014-007324

17. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur Heart J. 2003;24(11):987-1003. doi:10.1016/S0195-668X(03)00114-3

18. Jørstad HT, Colkesen EB, Boekholdt SM, et al. Estimated 10-year cardiovascular mortality seriously underestimates overall cardiovascular risk. Heart. 2016;102(1):63-68. doi:10.1136/heartjnl-2015-307668

19. Pandya A, Weinstein MC, Gaziano TA. A comparative assessment of non-laboratory-based versus commonly used laboratory-based cardiovascular disease risk scores in the NHANES III population. PLoS One. 2011;6(5):e20416. doi:10.1371/journal.pone.0020416

20. Jones CA, Ross L, Surani N, Dharamshi N, Karmali K. Framingham ten-year general cardiovascular disease risk: Agreement between BMI-based and cholesterol-based estimates in a South Asian convenience sample. PLoS One. 2015;10(3):1-15. doi:10.1371/journal.pone.0119183

21. Kavousi M, Leening MJG, Nanchen D, et al. Comparison of application of the ACC/AHA guidelines, Adult Treatment Panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. Jama. 2014;311(14):1416-1423. doi:10.1001/jama.2014.2632

22. US Preventive Services Task Force. Statin Use for the Primary Prevention of Cardiovascular. J Am Med Assoc. 2016;316(19). doi:10.1001/jama.2016.15450

23. Wald NJ, Law MR. A strategy to reduce cardiovascular disease by more than 80%. BMJ. 2003;326:1-6. doi:

24. Johnson KM, Dowe DA. Accuracy of statin assignment using the 2013 AHA/ACC cholesterol guideline versus the 2001 NCEP ATP III guideline: Correlation with atherosclerotic plaque imaging. J Am Coll Cardiol. 2014;64(9):910-919. doi:10.1016/j.jacc.2014.05.056

25. Cho YK, Jung CH, Kang YM, et al. 2013 ACC/AHA Cholesterol Guideline Versus 2004 NCEP ATP III Guideline in the Prediction of Coronary Artery Calcification Progression in a Korean Population. J Am Heart Assoc. 2016;5(8):e003410. doi:10.1161/JAHA.116.003410

26. Mortensen MB, Nordestgaard BG, Afzal S, Falk E. ACC / AHA guidelines superior to ESC / EAS guidelines for primary prevention with statins in non-diabetic Europeans : the Copenhagen General Population Study. Eur Heart J. 2017;38:586-594. doi:10.1093/eurheartj/ehw426


Article Metrics

Abstract views : 584 | views : 812


  • There are currently no refbacks.

Copyright (c) 2018 JURNAL MANAJEMEN DAN PELAYANAN FARMASI (Journal of Management and Pharmacy Practice)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This Journal is Indexed on:

Analytics View My Stats