Studi CFD mengenai Pengaruh Sifat Fisis Fluida terhadap Karakteristik Counter-Current Flow Limitation pada Pipa Horizontal

https://doi.org/10.22146/jmdt.66408

Andhika Satria Pratama(1*), Indarto Indarto(2), Deendarlianto Deendarlianto(3)

(1) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(2) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(3) Departemen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada. Jl. Grafika No. 2, Kompleks UGM, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Tujuan penelitian ini ialah untuk mempelajari pengaruh densitas cairan, viskositas cairan, dan densitas gas terhadap karakteristik counter current flow limitation atau flooding pada pipa horizontal. Analisis numerik dilakukan menggunakan software CFD Ansys Fluent 2020 R2 student version dengan menerapkan model volume of fluid (VOF). Aparatus penelitian yang digunakan ialah geometri pipa hot leg reaktor PWR tipe German Konvoi skala 1/30 yang terdiri dari reactor pressure vessel, pipa hot leg, dan steam generator. Pipa hot leg yang digunakan memiliki diameter dalam D = 25,4 mm dan panjang pipa horizontal L = 635 mm (L/D = 25). Cairan yang digunakan ialah air, kloroform, larutan gliserin 10%, dan propil asetat, sedangkan gas yang digunakan ialah udara dan uap air. Hasil penelitian menunjukkan bahwa peningkatan densitas cairan menyebabkan peningkatan kecepatan superficial flooding gas, serta menyebabkan pergeseran hydraulic jump dan locus of slugging menjauhi belokan. Hasil dari peningkatan viskositas cairan menunjukkan pola yang berkebalikan dibandingkan hasil dari peningkatan densitas cairan. Penurunan densitas gas menyebabkan flooding terjadi pada kecepatan superficial gas yang lebih tinggi, serta menyebabkan pergeseran hydraulic jump dan locus of slugging menjauhi belokan.


Keywords


Counter-current flow limitation; Sifat fisis fluida; Computational fluid dynamics.

Full Text:

PDF


References

Badarudin, A., Setyawan, A., Dinaryanto, O., Widyatama, A., Indarto, & Deendarlianto. (2018). Interfacial behavior of the air-water counter-current two-phase flow in a 1/30 scale-down of pressurized water reactor (PWR) hot leg. Annals of Nuclear Energy, 116, 376–387. https://doi.org/10.1016/j.anucene.2018.03.007

Deendarlianto, Höhne, T., Lucas, D., & Vierow, K. (2012). Gas-liquid countercurrent two-phase flow in a PWR hot leg: A comprehensive research review. Nuclear Engineering and Design, 243(2), 214–233. https://doi.org/10.1016/j.nucengdes.2011.11.015

Deendarlianto, Höhne, T., Lucas, D., Vallée, C., & Zabala, G. A. M. (2011). CFD studies on the phenomena around counter-current flow limitations of gas/liquid two-phase flow in a model of a PWR hot leg. Nuclear Engineering and Design, 241(12), 5138–5148. https://doi.org/10.1016/j.nucengdes.2011.08.071

Deendarlianto, Ousaka, A., Indarto, Kariyasaki, A., Lucas, D., Vierow, K., Vallee, C., & Hogan, K. (2010). The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube. Experimental Thermal and Fluid Science, 34(7), 813–826. https://doi.org/10.1016/j.expthermflusci.2010.01.010

Glycerine Producers’ Association. (1963). Physical Properties of Glycerine and Its Solutions. Glycerine Producers’ Association.

Haynes, W. M. (2016). CRC Handbook of Chemistry and Physics (97 ed.). CRC Press LLC Florence : Taylor & Francis Group.

Kinoshita, I., Nriai, T., Tomiyama, A., Lucas, D., & Murase, M. (2011). Effects of Liquid Properties on CCFL in a Scaled-Down Model of a PWR Hot Leg. Journal of Power and Energy Systems, 5(3), 316–329. https://doi.org/10.1299/jpes.5.316

Mouza, A. A., Pantzali, M. N., & Paras, S. V. (2005). Falling film and flooding phenomena in small diameter vertical tubes: The influence of liquid properties. Chemical Engineering Science, 60(18), 4981–4991. https://doi.org/10.1016/j.ces.2005.04.014

Murase, M., Utanohara, Y., Kinoshita, I., Yanagi, C., Takata, T., Yamaguchi, A., & Tomiyama, A. (2012). VOF simulations of countercurrent gas-liquid flow in a PWR hot leg. Journal of Computational Multiphase Flows, 4(4), 375–386. https://doi.org/10.1260/1757-482X.4.4.375

Ohnuki, A. (1986). Experimental Study of Counter-Current Two-Phase Flow in Horizontal Tube Connected to Inclined Riser. Journal of Nuclear Science and Technology, 23(3), 219–232. https://doi.org/10.1080/18811248.1986.9734975

Ousaka, A., Deendarlianto, Kariyasaki, A., & Fukano, T. (2006). Prediction of flooding gas velocity in gas-liquid counter-current two-phase flow in inclined pipes. Nuclear Engineering and Design, 236(12), 1282–1292. https://doi.org/10.1016/j.nucengdes.2005.12.001

Pantzali, M. N., Mouza, A. A., & Paras, S. V. (2007). Study of hydrodynamic characteristics of the liquid layer during counter-current flow in inclined small diameter tubes : the effect of liquid properties. 6th International Conference on Multiphase Flow.

Prayitno, S., Santoso, R. A., Deendarlianto, Höhne, T., & Lucas, D. (2012). Counter current flow limitation of gas-liquid two-phase flow in nearly horizontal pipe. Science and Technology of Nuclear Installations, 2012. https://doi.org/10.1155/2012/513809

Seidel, T., Vallée, C., Lucas, D., Beyer, M., & Deendarlianto. (2011). Two-phase flow experiments in a model of the hot leg of a pressurised water reactor. https://doi.org/10.1017/CBO9781107415324.004

Suzuki, S., & Ueda, T. (1977). Behaviour of liquid films and flooding in counter-current two-phase flow-Part 1. Flow in circular tubes. International Journal of Multiphase Flow, 3(6), 517–532. https://doi.org/10.1016/0301-9322(77)90027-1

Wallis, G. B. (1969). One-dimensional Two-phase Flow. McGraw-Hill.

Zapke, A., & Kröger, D. G. (1996). The influence of fluid properties and inlet geometry on flooding in vertical and inclined tubes. International Journal of Multiphase Flow, 22(3), 461–472. https://doi.org/10.1016/0301-9322(95)00076-3



DOI: https://doi.org/10.22146/jmdt.66408

Article Metrics

Abstract views : 2632 | views : 2443

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.