Protein dan vitamin D3 meningkatkan kadar fosfor maksila anak tikus putih Rattus novergicus galur Wistar dengan berat badan lahir rendah

https://doi.org/10.22146/ijcn.57276

Rizki Amalia Hidayah(1*), Emy Huriyati(2), Lisdrianto Hanindriyo(3)

(1) Kedokteran Gigi, Fakultas Kedokteran Universitas Jenderal Soedirman, Purwokerto, Jawa Tengah, Indonesia
(2) Departemen Gizi Kesehatan, Fakultas Kedokteran, Kesehatan Masyarakat, dan Keperawatan Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Ilmu Kesehatan Gigi Masyarakat, Fakultas Kedokteran Gigi Universitas Gadjah Mada, Yogyakarta, Indonesia
(*) Corresponding Author

Abstract


Protein and vitamin D3 increase the phosphorus levels of maxillary in malnourished mice pup

Background: Protein deficiency during pregnancy leads to malnutrition in the newborn. One of the signs is low birth weight, which impacts bone and teeth growth problems, most probably related to vitamin D and phosphorus deficiency. Adequate protein and vitamin D3 during the nursing period increase the phosphorus level of bone related to fosfor absorption, which increases in the gut.

Objective: This research was conducted to determine the effect of protein and vitamin D3 during the nursing period on increasing phosphorus levels of maxillary in prenatal malnutrition mice.

Methods: Experimental study with post-test-only control group design. Thirty the Rattus novergicus Wistar strain mice were divided into five groups (n=6). The positive control group (healthy mice suckle in mother who received a standard protein diet and vitamin D3 0.36 IU/g BW/day/oral), negative control group (malnourished mice suckle in mother who received a low protein diet), and three groups of malnutrition mice suckle in mother who receives intervention standard protein diet with vitamin D3 0.36 IU/g BW/day/oral, low protein diet with vitamin D3 0,36 IU/g BW/day/oral, and a standard protein diet without vitamin D3. The parameter measured was phosphorus levels in the maxillary.

Results: ANOVA test results showed significant phosphorus level differences of maxillary between groups (p<0.001), and the Post Hoc test showed differences between the control group with interventions 1, 2, and 3 groups.

Conclusion: Intervention of a standard protein diet without vitamin D3 or a low protein diet with vitamin D3 0.36 IU/day/oral significantly increases the phosphorus level of maxillary in malnourished mice. However, combining a standard protein diet and vitamin D3 0.36 IU/day/oral is the most optimum for improving maxillary bone phosphorus levels in malnourished mice.


Keywords


maxillary bone; phosphorus level; prenatal malnutrition; protein; vitamin D3

Full Text:

PDF


References

  1. Kominiarek MA, Rajan P. Nutrition recommendations in pregnancy and lactation. Med Clin North Am. 2016;100(6):1199-215. doi: 10.1016/j.mcna.2016.06.004
  2. Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev. 2014;94(4):1143-218. doi: 10.1152/physrev.00014.2014
  3. AO Ehizele, PI Ojehanon, O Akhionbare. Nutrition and oral health. Benin Journal of Postgraduate Medicine 11(1). doi: 10.4314/bjpm.v11i1.48830
  4. Bonjour JP. The dietary protein, IGF-I, skeletal health axis. Horm Mol Biol Clin Investig. 2016;28(1):39-53. doi: 10.1515/hmbci-2016-0003
  5. Darcey J, Horner K, Walsh T, Southern H, Marjanovic EJ, Devlin H. Tooth loss and osteoporosis: to assess the association between osteoporosis status and tooth number. Br Dent J. 2013;214(4):E10. doi: 10.1038/sj.bdj.2013.165
  6. Penoni DC, Leão ATT, Fernandes TM, Torres SR. Possible links between osteoporosis and periodontal disease. Revista Brasileira de Reumatologia (English Edition). 2017;57(3):270-3. doi: 10.1016/j.rbre.2016.03.004
  7. Mitchell L. Introduction to orthodontics, 4st ed. New York: Oxford University Press; 2013.
  8. Laguhi VA, Anindita PS, Gunawan PN. Gambaran maloklusi dengan menggunakan HMAR pada pasien di Rumah Sakit Gigi dan Mulut Universitas Sam Ratulangi Manado. Jurnal e-Gigi(eG). 2014;2(2):1-7.
  9. Soeroso Y. Perkembangan terapi periodontal non bedah pada periodontitis kronis. The Third National Scientific Seminar in Periodontics. Hotel Aryaduta, Jakarta 6–7 September 2014.
  10. Kementrian Kesehatan Republik Indonesia. Hasil Utama RISKESDAS 2018. Jakarta: Badan Penelitian dan Pengembangan Kesehatan Kemenkes RI; 2018.
  11. Guyton AC, Hall JE. Guyton and Hall Buku ajar fisiologi kedokteran. Singapura: Elsevier; 2016.
  12. Jekl V, Krejcirova L, Buchtova M, Knotek Z. Effect of high phosphorus diet on tooth microstructure of rodent incisors. Bone. 2011;49(3):479-84. doi: 10.1016/j.bone.2011.04.021
  13. Miles TS. Bone and calcium metabolism. In: Clinical oral physiology. United Kingdom: QP United Kingdom; 2004.
  14. Wishney M, Darendeliler MA, Dalci O. Craniofacial growth studies in orthodontic research — lessons, considerations and controversies. Australasian Orthodontic Journal. 2018;34(1). doi: 10.21307/aoj-2020-059
  15. Jonasson G, Skoglund I, Rythén M. The rise and fall of the alveolar process: Dependency of teeth and metabolic aspects. Arch Oral Biol. 2018;96:195-200. doi: 10.1016/j.archoralbio.2018.09.016
  16. Malole MBM, Pramono CSU. Pengantar hewan-hewan percobaan di laboratorium, Pusat Antar Universitas Bioteknologi IPB. Bogor: Institut Pertanian Bogor; 2009.
  17. Mu M, Wang SF, Sheng J, Zhao Y, Li HZ, Tao FB, et al. Birth weight and subsequent blood pressure: a meta-analysis. Arch Cardiovasc Dis. 2012;105(2):99-113. doi: 10.1016/j.acvd.2011.10.006
  18. Xie Z, Dong Q, Ge J, Chen P, Li W, Hu J. Effect of low birth weight on impaired renal development and function and hypertension in rat model. Ren Fail. 2012;34(6):754-9. doi: 10.3109/0886022X.2012.676526
  19. Hassan EK, Hegazy MS. Histopatological and weight changes of the rat fetal liver of females fed with low protein diet during pregnancy. AAMJ. 2014;12(2): 257-75.
  20. Pillai SM, Sereda NH, Hoffman ML, Valley EV, Crenshaw TD, Govoni KE, et al. Effects of poor maternal nutrition during gestation on bone development and mesenchymal stem cell activity in offspring. PLoS One. 2016;11(12):e0168382. doi: 10.1371/journal.pone.0168382
  21. D'Ortenzio L, Kahlon B, Peacock T, Salahuddin H, Brickley M. The rachitic tooth: refining the use of interglobular dentine in diagnosing vitamin D deficiency. Int J Paleopathol. 2018;22:101-8. doi: 10.1016/j.ijpp.2018.07.001
  22. Nair R, Maseeh A. Vitamin D: the "sunshine" vitamin. J Pharmacol Pharmacother. 2012;3(2):118-26. doi: 10.4103/0976-500X.95506
  23. Mandema JW, Zheng J, Libanati C, Perez Ruixo JJ. Time course of bone mineral density changes with denosumab compared with other drugs in postmenopausal osteoporosis: a dose-response-based meta-analysis. J Clin Endocrinol Metab. 2014;99(10):3746-55. doi: 10.1210/jc.2013-3795
  24. Peters BS, Martini LA. Nutritional aspects of the prevention and treatment of osteoporosis. Arq Bras Endocrinol Metabol. 2010;54(2):179-85. doi: 10.1590/s0004-27302010000200014
  25. Bozzini CE, Champin G, Alippi RM, Bozzini C. Bone mineral density and bone strength from the mandible of chronically protein restricted rats. Acta Odontol Latinoam. 2011;24(3):223-8.
  26. Pudyani PS. Reversibilitas kalsifikasi tulang akibat kekurangan protein pre dan post natal. Dental Journal: Majalah Kedokteran Gigi. 2005;38(3):115-9. doi: 10.20473/j.djmkg.v38.i3.p115-119
  27. Marks DB, Allan DM, Colleen MS. Biokimia kedokteran dasar: sebuah pendekatan klinis, edisi 1. Jakarta: EGC; 2000.



DOI: https://doi.org/10.22146/ijcn.57276

Article Metrics

Abstract views : 262 | views : 266

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Jurnal Gizi Klinik Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Gizi Klinik Indonesia (JGKI) Indexed by:
 
  

  free
web stats View My Stats