Tanggapan Aksesi Kacang Hijau (Vigna radiata L.) terhadap Mikoriza di Lahan Sawah Bekas Padi
Hafidh Izzudin(1), Taryono Taryono(2*), Muhammad Habib Widyawan(3)
(1) Departemen Budidaya Pertanian, Fakultas Pertanian, Universitas Gadjah Mada
(2) Departemen Budidaya Pertanian, Fakultas Pertanian, Universitas Gadjah Mada
(3) Departemen Budidaya Pertanian, Fakultas Pertanian, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Produksi kacang hijau nasional menurun selama kurun waktu tahun 2016 – 2018. Salah satu usaha untuk meningkatkan produktivitas tanaman secara ramah lingkungan adalah menambahkan agen hayati-mikoriza, karena pemberian mikoriza mampu meningkatkan pertumbuhan serta komponen hasil tanaman. Penelitian ini bertujuan untuk mengetahui tanggapan beberapa aksesi kacang hijau terhadap inokulasi mikoriza serta memilih aksesi yang tanggap terhadap inokulasi mikoriza sebagai bahan kajian genetika dan fisiologi ketergantungan kacang hijau terhadap mikoriza. Penelitian dilaksanakan di lahan Pusat Inovasi Agroteknologi Universitas Gadjah Mada (PIAT-UGM) Kalitirto, Berbah, Sleman, Yogyakarta menggunakan rancangan acak lengkap (RAL) petak terbagi yang terdiri atas dua faktor. Faktor utama yaitu perlakuan inokulasi dan anak faktor berupa 20 aksesi kacang hijau. Pengamatan meliputi infeksi mikoriza, sifat komponen hasil, dan hasil. Data yang diperoleh selanjutnya dianalisis menggunakan analisis varian sesuai rancangan acak lengkap, uji lanjut Scott Knott, dan analisis korelasi. Pada penelitian ini masing-masing nomor aksesi kacang hijau memiliki tanggapan yang beragam terhadap inokulasi mikoriza. Persentase infeksi mikoriza lebih tinggi pada perlakuan inokulasi. Inokulasi mikoriza mampu meningkatkan jumlah polong per tanaman, biji per polong, dan bobot biji per tanaman, namun tidak dengan bobot 100 biji tanaman. Persentase infeksi mikoriza pada umur 20 hari setelh tanam nyata berhubungan dengan hasil biji. Hasil penelitian memberikan informasi bahwa nomor aksesi 788, 797, 798, 805, 807, 810, 812, 826, 829, dan 832 berpotensi untuk dikembangkan sebagai bahan kajian genetika dan fisiologi ketergantungan kacang hijau terhadap mikoriza.
Keywords
Full Text:
PDFReferences
Ali Jamro, S., W. A. Siddiqui, M. I. Ahmad, S. A. Junejo. 2018. Growth and yield response of mungbean under the influence of nitrogen and phosphorus combination levels. Journal of Applied Environmental Biological Science 8: 19 19
Almeida, L., R. Williams, W. Erskine. 2020. Is broadcasting mungbean into rice crops a useful practice in Timor Leste. Proceeding 36: 167
Bajwa R., A. Javaid, T. Riaz. 2007. Correlation between plant growth and mycorrhizal colonization in mungbean under allelopathic stress. Pakistan Journal of Phytopathology 19: 47-53
Biro Pusat Statistik. 2018. Statistik Pertanian 2018. Kementerian Pertanian
Eo, J-K, A-H Eom. 2009. Differential growth response of various crop species to arbuscular mycorrizal inoculation. Mycobiology 37: 72-76
Feng, G., Y. C. Song, X. L. Li, P. Christie. 2003. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources phosphorous by red clover in calcareous soil. Applied Soil Ecology 22: 139-148
Fitrianto, Hermanto, dan H. Kriswantoro. 2014. Studi pemanfaatan mikoriza arbuskular dan efisiensi pupuk phospat terhadap pertumbuhan dan produksi kacang hijau (Phaseolus radiatus L) pada tanah PMK. Prosiding Seminar Nasional Lahan Suboptimal. Program Studi Agroteknologi, Fakultas Pertanian, Universitas Musi Rawas, Palembang.
Habibzadeh, Y. 2014. Response of mungbean plants to arbuscular mycorrhiza and phosphorus in drought stress. International Journal of Innovation and Applied Studies 6: 14-20.
Hamel, C. 2004. Impact of arbusculare mycorrhizal fungi on N and P cycling in the root zone. Canadian Journal of Soil Science 84: 383 – 395.
Ho, I. 1989. Acid phosphatase, alkaline phosphatase, and nitrate reductase activity of selected ectomycorrhizal fungi. Canadian Journal of Botany 67: 750 – 753.
Hacisalihoglu, G., E. R. Duke, L. M. Longo. Differential response of common bean genotypes to mycorrhizal colonization. Proceedings of Florida State Horticultural Science 118: 150 – 152.
Hohmann, P., M. M. Messner. 2017. Breeding for mycorrhizal symbiosisi: focus on disease ressistance. Euphytica 213: 113-124.
Ilag, L. L., A. M. Rosales, F. A. Elazegui, T. W. Mew. 1987. Changes in the population of infective endomycorrhizal fungi in rice-based cropping system. Plant and Soil 103: 67-73.
Jangra, D., R. Jadav. 2015. Genotypic variation for reponse to Rhizobial sp. and Piriformospora indica for yield and yield components in mungbean (Vigna radiata (l.) Wilczek). International Journal of Applied Biology and Pharmaceutical Technology 6: 267 – 272.
Kadian, N., K. Yadav, A. Aggrawal. 2014. Application of AM fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil. Journal of stress physiology and Biochemistry 10: 134-154.
Kirchhof, G. S. Priyono, W. H. Utomo, T. Adisarwanto, E. V. Dacanay, H. B. So. 2000. The effect of soil puddling on the soil physical properties and the growth of rice and post-rice crops. Soil and Tillage Reserach 56: 37-50.
Klinnawee, L., N. Noirungsee, K. Nopphsksr, P. Runsaeng, T., Chantarachot. 2021. Flooding overshadows phosphorus availability in controlling the intensity of arbuscular mycorrhizal colonization in Sangyod Muang Phattalung Lowland indica rice. Scienceasia 47: 1-9.
Kokkoris, V., C. Hamel, M. M. Hart. 2019. Mycorrhizal response in crop versus wild plants. Plos One 14: 1-16.
Koyama, T., K. Adachi, T. Suzuki. 2019. Response of soybean plants to two inoculation methods with arbuscular mycorrhizal fungus of Glomus sp. strain R-10 under field condition. Plant Production Science 22: 1-5.
Molla, M. N., A. R. M. Solaiman. 2014. Influence or arbuscular mycorrhiza in presence of Rhizobium, nitrogen and phosphorus on growth and yield of mungbean. Bulletin of Institute of Tropical Agriculture of Kyushu University 27: 1-26.
Mosse, B., D. S. Hayman, dan D. J. Arnold. 1973. Plant growth responses to Vesicular‐Arbuscular mycorrhiza via phosphate uptake by three plant species from P‐deficient soils labelled with 32p. New Phytologist, 72(4): 809-815.
Nair, R., R. Schafleitner, W. Easdown, A. Ebert, P. Hanson, J. D’Arros Hughes, J. D. H. Keatinge. 2014. Legume improvement program at AVRDC-The World Vegetable Centre: impact and future prospects. Ratar Poverty 51: 55-61.
Nurhalimah, S., S. Nurhatika, dan A. Muhibuddin. 2014. Eksplorasi mikoriza vesikular arbuskular (MVA) indigeneous pada tanah regosol di Pamekasan, Madura. Jurnal Sains dan Seni ITS. 3(1): 1-5.
Putri, T. E., Y. Yuliani dan G. Trimulyono. 2019. Penggunaan mikoriza vesikular arbuskular (MVA) genus Glomus untuk meningkatkan pertumbuhan dan produksi Kacang Hijau (Vigna radiata) pada cekaman air. LenteraBio 8(2): 107-112.
Rohyadi, A., R. Noviani., M. Isnaini. 2017. Responses of cowpea genotypes to arbuscular mycorrhiza. Agrivita 39: 288-295.
Ronsheim, M. L. 2012. The effect of mycorrhizae on plant growth and reproduction varieis with soil phosphorus and development stage. American Midle Nature 167: 28-39.
Salunke, M. D., M. S. Pithia, D. R. Metha. 2016. Estimation of heterosisi, inbreeding depression and transgressive segregation in mungbean (Vigna radiata (L) Wilczek). International Journal of Current Research 8: 43530-43433.
Sanchez, M.R., Y. S. Banos, Y. M. Hernandez, A. Y. Martinez, M. Betinez, B. V. Bharat, Y. P. Chavez. 2015. Arbuscular mycorrhizal symbioisis in rice (Oryza sativa) plants in flooded and non-flooded conditions. Acta Agronomica 64: 211-217.
Sanders, F. E., P. B. Tinker. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233: 278-279.
Sinclair, T. R., V. Valdez. 2002. Physiological trait for crop yield improvement in low N and P environments. Plant and Soil 245:1-15.
Smith, S. E., D. J.Read. 2008. Mycorrhizal Symbiosis. Academic Press. London
Tarafdar, J. C., H. Marschner.1994. Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants. Soil Science Plant Nutrition 40: 593 – 600.
Vallino, M., V. Fiorilli, P. Bonfante. 2014. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell and Environment 37: 557-572.
Wang, X., J. B. Shen, H. Liao. 2010. Acquisition or utilization which is more critical for enhancing phosphorus efficiency in modern crops?Plant Science 179: 302-306.
Wangiyama, W. 2007. Effect of flooding and rice cropping on the development of arbuscular mycorrhizal fungi on subsequent upland rice (Oryza sativa L.). Agroteksos 17: 1- 7.
Wangiyana, W., P. S. Cornish, E. C. Morris. 2006. Arbuscular mycorrhizal fungi dynamics in contrasting cropping systems on vertisol and regosol soils of Lombok, Indonesia. Exploration in Agriculture 42: 427-439.
Wangiyana, W., P. S. Comish, M.H. Ryan. 2016. Arbuscular mycorrhiza in various rice growing environments and their implication for soybean yields on vertical soil in central Lombok, Indonesia. IOSR Journal of Environmental Science, Toxicology and Food Technology 10: 51-57.
DOI: https://doi.org/10.22146/veg.63569
Article Metrics
Abstract views : 1262 | views : 1763Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Vegetalika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
VEGETALIKA journal indexed by: