Monitoring Ekspresi Gen Chalcone Synthase dan Respon Pertumbuhan Lobak Singgalang (Brassica oleracea L.) Akibat Paparan Ultraviolet-B Ekstrem

Puti Khairunnajwa Amar(1), Mansyurdin Mansyurdin(2), Nova Syafni(3), Ersa Nur Syafia(4), Muhammad Idris(5*)
(1) Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, University of Andalas
(2) Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, University of Andalas
(3) Fakultas Farmasi, Universitas Andalas, Kampus Universitas Andalas, Limau Manis, Padang, Sumatera Barat, 25163
(4) Agrotropika Learning Center (AGLC), Fakultas Pertanian, Universitas Gadjah Mada
(5) Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, University of Andalas
(*) Corresponding Author
Abstract
Singgalang cabbage (Brassica oleracea L.) is a local vegetable native to West Sumatra, cultivated in highlands around Mount Singgalang, Tanah Datar. Vegetables from Brassica genus are recognized for their high nutritional value and potential as functional foods. Key secondary metabolites in Brassica species, i.e., phenolic compounds and their derivatives, play a crucial role in antioxidant activity and are essential in promoting health. Light exposure, particularly ultraviolet-B (UV-B, 280-315 nm), can enhance biosynthesis of these compounds. UV-B intensity affects various process in plants including the phenylpropanoid pathway involved in secondary metabolite production. This study aimed to assess the expression of the CHALCONE SYNTHASE (CHS) gene under different UV-B intensities (0.3–3.0 µmol·m-2·s-1, 4 h) and examine the effects of two extreme UV-B intensities (0.3 and 3.0 µmol·m-2·s-1, 4h.d-1) in a controlled environment for 14 days. The results showed that increasing UV-B intensity enhanced CHS expression (1.0 and 3.0 µmol·m-2·s-1 showed thicker bands compared to 0.3 µmol·m-2·s-1, with a faint band in the control). Extreme UV-B exposure reduced chlorophyll content by 35–37% compared to the control, while carotenoids remained unaffected. Anthocyanin accumulation increased under low-intensity UV-B, whereas flavonoid levels were higher under high-intensity UV-B, suggesting different functional roles. UV-B exposure also influenced stomatal number and density in leaf. This preliminary study highlights the significant role of UV-B in enhancing specific metabolites in Singgalang cabbage, supporting its potential as a functional food.
Keywords
Full Text:
PDFReferences
Ac, A., Jansen, M.A.K., Grace, J. & Urban, O. 2024. Unravelling the neglected role of ultraviolet radiation on stomata: A meta-analysis with implications for modelling ecosystem–climate interactions. Plant, Cell & Environment. 47: 1769-1781.
Agati, G., Brunetti, C., dos Santos Nascimento, L.B., Gori, A., Piccolo, E.L. & Tattini, M. 2025. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. New Phytologist. 245: 11-26.
Aiamla-or, S., Yamauchi, N., Takino, S., & Shigyo, M., 2009. Effect of UV-A and UV-B irradiation on broccoli (Brassica oleracea L. Italica Group) floret yellowing during storage. Postharvest Biology and Technology. 54: 177–179.
Alexander, A., Jansen, M.A.K., Grace, J., & Urban, O., 2024. Unravelling the neglected role of ultraviolet radiation on stomata: A meta-analysis with implications for modelling ecosystem–climate interactions. Plant, Cell and Environment. 47: 1769–1781.
Begum, H.A., Hamayun, M., Shad, N., Khan, W., Ahmad, J., Khan, M.E.H., Jones, D.A., & Ali, K., 2021. Effects of UV radiation on germination, growth, chlorophyll content, and fresh and dry weights of Brassica rapa L. and Eruca sativa L. Sarhad Journal of Agriculture. 37: 1016–1024.
Brown, B.A., Cloix, C., Jiang, G.H., Kaiserli, E., Herzyk, P., Kliebenstein, D.J., & Jenkins, G. I., 2005. A UV-B-specific signaling component orchestrates plant UV protection. Proceedings of the National Academy of Sciences of the United States of America. 102: 18225–18230.
Brown, B.A., & Jenkins, G.I., 2008. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiology. 146: 576–588.
Cartea, M.E., Francisco, M., Soengas, P., & Velasco, P., 2011. Phenolic compounds in Brassica vegetables. Molecules. 16: 251–280.
Chen, Z., Dong, Y., & Huang, X. 2022. Plant responses to UV-B radiation: Signaling, acclimation and stress tolerance. Stress Biology. 2: 51. DOI: https://doi.org/10.1007/s44154-022-00076-9.
David, W. 2011. Local Food Security and Principle of Organic Farming (from Farm to Fork) in Context of Food Culture in Indonesia: Minangkabau's Case Study. Doctoral Dissertation the University of Kassel, Germany.
DEPKES RI. 2017. Farmakope Herbal Indonesia Edisi II. Kementerian Kesehatan Republik Indonesia. Jakarta.
Derebe, A.D., Gobena Roro, A., Tessfaye Asfaw, B., Worku Ayele, W., & Hvoslef-Eide, A.K., 2019. Effects of solar UV-B radiation exclusion on physiology, growth and yields of taro (Colocasia esculenta (L.)) at different altitudes in tropical environments of Southern Ethiopia. Scientia Horticulturae. 256: 108563. DOI: https://doi.org/10.1016/j.scienta.2019.108563.
Easlon, H.M., & Bloom, A.J., 2014. Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences. 2: 1400033. DOI: https://doi.org/10.3732/apps.1400033.
Fasano, R., Gonzalez, N., Tosco, A., Piaz, F.D., Docimo, T., Serrano, R., Grillo, S., Leone, A., & Inze, D., 2014. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B. Molecular Plant. 7: 773–791.
Favory, J.J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G.I., Oakeley, E.J., Seidlitz, H.K., Nagy, F., & Ulm, R., 2009. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO Journal. 28: 591–601.
Ferreyra, M.L.F., Serra, P., & Casati, P., 2021. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiologia Plantarum. 173: 736–749.
Fina, J., Casadevall, R., Elgawad, H., Prinsen, E., Markakis, M.N., Beemster, G.T.S., & Casati, P., 2017. UV-B inhibits leaf growth through changes in growth regulating factors and gibberellin levels. Plant Physiology. 174: 1110–1126.
Gadi, B.R., 2018. Effect of UV-B radiation on plants. International Journal of Scientific Research in Science and Technology. 4: 255–260.
Hao, J., Lou, P., Han, Y., Zheng, L., Lu, J., Chen, Z., Ni, J., Yang, Y., & Xu, M., 2022. Ultraviolet-B irradiation increases antioxidant capacity of pakchoi (Brassica rapa L.) by inducing flavonoid biosynthesis. Plants. 11: 766. DOI: https://doi.org/10.3390/plants11060766
Holl, J., Lindner, S., Walter, H., Joshi, D., Poschet, G., Pfleger, S., Ziegler, Hell, R., T., Bogs, J., & Rausch, T., 2019. Impact of pulsed UV-B stress exposure on plant performance: How recovery periods stimulate secondary metabolism while reducing adaptive growth attenuation. Plant, Cell & Environment. 42: 801-814.
Idris, M., Seo, N., Jiang, L., Kiyota, S., Hidema, J., & Iino, M., 2021. UV-B signalling in rice: Response identification, gene expression profiling and mutant isolation. Plant, Cell & Environment. 44: 1468-1485.
Jadidi, M., Mumivand, H., Nia, A.E., Shayganfar, A., & Maggi, F., 2023. UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity and essential oil composition of Pelargonium graveolens. BMC Plant Biology. 23: 555. DOI: https://doi.org/10.1186/s12870-023-04556-6.
Jenkins, G.I., 2017. Photomorphogenic responses to ultraviolet-B light. Plant, Cell & Environment. 40: 2544-2557.
Li, W., Tan, L., Zou, Y., Tan, X., Huang, J., Chen, W. & Tang, Q. 2020. The effects of ultraviolet A/B treatments on anthocyanin accumulation and gene expression in dark-purple tea cultivar ‘Ziyan’ (Camellia sinensis). Molecules. 25: 352. DOI: http://dx.doi.org/10.3390/molecules25020354.
Li, X., Ren, Q., Zhao, W., Liao, C., Wang, Q., Ding, T., Hu, H., & Wang, M., 2023. Interaction between UV-B and plant anthocyanins. Functional Plant Biology. 50: 599–611.
Lichtenthaler, H., 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology. 148C: 350-382.
Lipoeto, N.I., Agus, Z., Oenzil, F., Masrul, M., Wattanapenpaiboon, N., & Wahlqvist, M.L., 2001. Contemporary Minangkabau food culture in West Sumatra, Indonesia. Asia Pacific Journal of Clinical Nutrition. 10: 10-16.
Liu, S., Gu, X., Jiang, Y., Wang, L., Xiao, N., Chen, Y., Jin, B., Wang, L. & Li, W. 2023. UV-B promotes flavonoid biosynthesis in Ginkgo biloba by inducing the GbHY5-GbMYB1-GbFLS module. Horticulture Research. 10: uhad118. DOI: https://doi.org/10.1093/hr/uhad118.
Liu, X., Xie, Z., Xin, J., Yuan, S., Liu, S., Sun, Y., Zhang, Y., & Jin, C., 2024. OsbZIP18 Is a positive regulator of phenylpropanoid and flavonoid biosynthesis under UV-B radiation in rice. Plants. 13: 498. DOI: https://doi.org/10.3390/plants13040498.
Mancinelli, A.L., 1984. Photoregulation of anthocyanin synthesis’ VIII. Effect of light pretreatments. Plant Physiology. 75: 447-453.
Mardatillah, A. 2020. The enterprise culture heritage of Minangkabau cuisine, West Sumatra of Indonesia as a source of sustainable competitive advantage. Journal of Ethnic Foods. 7: 34. DOI: https://doi.org/10.1186/s42779-020-00059-z.
Martínez-Silvestre, K.E., Santiz-Gómez, J.A., Luján-Hidalgo, M.C., Ruiz-Lau, N., Sánchez-Roque, Y., & Gutiérrez-Miceli, F.A., 2022. Effect of UV-B radiation on flavonoids and phenols accumulation in tempisque (Sideroxylon capiri Pittier) callus. Plants. 11: 473. DOI: https://doi.org/10.3390/plants11040473
Mewis, I., Schreiner, M., Nguyen, C.N., Krumbein, A., Ulrichs, C., Lohse, M., & Zrenner, R., 2012. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: Induced signaling overlaps with defense response to biotic stressors. Plant and Cell Physiology. 53: 1546–1560.
Niculcar, R., Fajardo, V., & Cuadra, P., 2023. Effects of UV-B radiation on the morphology, UV-B absorbing compounds and photosynthetic pigment content of Plantago lanceolata and Rheum rhabarbarum. Gayana Botanica. 80: 38-48.
Nogues, S., Allen, D.J., Morison, J.I.L., & Baker, N. R. 1999. Characterization of stomatal closure caused by ultraviolet-B radiation. Plant Physiology. 121: 489–496.
O’Hara, A., Headland, L.R., Díaz-Ramos, L.A., Morales, L.O., Strid, Å., & Jenkins, G.I., 2019. Regulation of Arabidopsis gene expression by low fluence rate UV-B independently of UVR8 and stress signaling. Photochemical and Photobiological Sciences. 18: 1675–1684.
Pandey, N., & Pandey-Rai, S., 2014. Modulations of physiological responses and possible involvement of defense-related secondary metabolites in acclimation of Artemisia annua L. against short-term UV-B radiation. Planta. 240: 611–627.
Podolec, R., Demarsy, E., & Ulm, R., 2021. Perception and signaling of ultraviolet-B radiation in plants. Annual Review of Plant Biology. 72: 793-822.
Radziejwoski, A., Vlieghe, K., Lammens, T., Berckmans, B., Maes, S., Jansen, M.A.K., Knappe, C., Albert, A., Seidlitz, H.K., Bahnweg, G., Inzé, D., & De Veylder, L., 2011. Atypical E2F activity coordinates PHR1 photolyase gene transcription with endoreduplication onset. EMBO Journal. 30: 355–363.
Rokayya, S., Li, C.J., Zhao, Y., Li, Y., & Sun, C.H., 2013. Cabbage (Brassica oleracea L.) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pacific Journal of Cancer Prevention. 14: 6657–6662.
Salama, H.M.H., Al Watban, A.A., & Al-Fughom, A.T., 2011. Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and proline contents of some annual desert plants. Saudi Journal of Biological Sciences. 18: 79–86.
Shen, J., Jiang, C.Q., Yan, Y.F., Liu, B.R., & Zu, C.L., 2017. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genetics and Molecular Research. 16: gmr16018438. DOI: http://dx.doi.org/10.4238/gmr16018438
Shi, X.X., Li, Z.T., Yang, K.J., Zhao, C.J., Yang, R.B., Yu, G.B., Huang, S.G., Xu, J.Y., He, L., Zhao, Y., Xu, Y.M., Ma, L.T, & Fan, B.W., 2016. Effects of enhanced ultraviolet B irradiation on photosynthetic and antioxidant system of sorghum seedlings. Spectroscopy and Spectral Analysis. 36: 1389-1395.
Tilbrook, K., Arongaus, A.B., Binkert, M., Heijde, M., Yin, R., & Ulm, R., 2013. The UVR8 UV-B photoreceptor: Perception, signaling and response. The Arabidopsis Book, 11: 164. DOI: https://doi.org/10.1199/tab.0164.
Tripathi, D., Meena, R.P., & Pandey-Rai, S., 2021. Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. Physiology and Molecular Biology of Plants. 27: 1823–1835.
Trush, K., Handzusova, N., & Palove-Balang, P., 2023. Changes in isoflavonoid and flavonoid content in soybean leaves affected by UV-B or copper. Agriculture (Pol’nohospodárstvo). 69: 140–148.
Tsurumoto, T., Fujikawa, Y., Onoda, Y., Ochi, Y., Ohta, D., & Okazawa, A., 2022. Transcriptome and metabolome analyses revealed that narrowband 280 and 310 nm UV-B induce distinctive responses in Arabidopsis. Scientific Reports. 12: 4319. DOI: https://doi.org/10.1038/s41598-022-08331-9.
Uuh-Narvaez, J.J., & Segura-Campos, M.R., 2021. Cabbage (Brassica oleracea var. capitata): A food with functional properties aimed to type 2 diabetes prevention and management.
Witham, F.H., Blaydes, D.F., & Devlin, R.M. 1986. Exercises in Plant Pphysiology Second Edition. Prindle, Weber and Schmidt. Boston.
Widiastuti, A., Sawitri, W.D., Idris, M., Handayani, V.D.S., Winona, B., Silalahi, C.M., Matra, D.D., Doni, F., & Setiyadi, A.H., 2024. Unraveling the potential UV-B induced gene expression of the primary and secondary metabolisms against environmental stress in shallot. Reviews in Agricultural Science. 12: 111–127.
Yufei, W., Ahmad, N., Jiaxin, C., Lili, Y., Yuying, H., Nan, W., Min, Z., Libo, J., Na, Y. & Xiuming, L. 2024. CtDREB52 transcription factor regulates UV-B-induced flavonoid biosynthesis by transactivating CtMYB and CtF3′H in Safflower (Carthamus tinctorius L.). Plant Stress. 11: 100384. DOI: https://doi.org/10.1016/j.stress.2024.100384.
Zhang, F., Huang, J., Guo, H., Yang, C., Li, Y., Shen, S., Zhan, C., Qu, L., & Wang, S., 2022. OsRLCK160 contributes to flavonoid accumulation and UV-B tolerance by regulating OsbZIP48 in rice. Science China Life Sciences. 65: 1380–1394.
Zhang, X., Jia, Q., Jia, X., Li, J., Sun, X., Min, L., Liu, Z., Ma, W., & Zhao, J., 2024. Brassica Vegetables - An Undervalued Nutritional Goldmine. Horticulture Research. uhae302 (early view). DOI: https://doi.org/10.1093/hr/uhae302.
Zhao, Y., Yue, Z., Zhong, X., Lei, J., Tao, P., dan Li, B. 2020. Distribution of primary and secondary metabolites among the leaf layers of headed cabbage (Brassica oleracea var. capitata). Food Chemistry. 312: 126028. DOI: https://doi.org/10.1016/j.foodchem.2019.126028.

Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Idris, Puti Khairunnajwa Amar, Mansyurdin Mansyurdin, Nova Syafni, Ersa Nur Syafia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
VEGETALIKA journal indexed by:
Statcounter