Assessment of heavy metal contamination in soil around Piyungan Landfill, Yogyakarta, Indonesia
Mufid Muyassar(1), Wawan Budianta(2*)
(1) Department Geological Engineering, Universitas Gadjah Mada
(2) Department Geological Engineering, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Agamuthu, P. (2001) Heavy metal contamination of soil-derived interstitial water in the coastal regions of selangor, Malaysia. Malaysian Journal of Science. 20(1), 127-134.
Alfaro, M. R., Montero, A., Ugarte, O. M., do Nascimento, C. W. A., de Aguiar Accioly, A. M., Biondi, C. M., and da Silva, Y. J. A. B. (2015) Background concentrations and reference values for heavy metals in soils of Cuba. Environmental monitoring and assessment. 187(1), 1-10.
American Standard for Testing Materials. (2002) Standard test method for particle size analysis of soils. ASTM D422-63.
Ariyani, S. F., Putra, H. P., Damanhuri, E., and Sembiring, E. (2019) Evaluation of waste management in piyungan landfill, Bantul Regency, Yogyakarta, Indonesia.
MATEC Web of Conf. 280, 05018. Azeez, J. O., Hassan, O. A., and Egunjobi, P. O. (2011) Soil contamination at dumpsites: Implication of soil heavy metals distribution in municipal solid waste disposal system: a case study of Abeokuta, Southwestern Nigeria.
Soil and Sediment Contamination. 20(4), 370-386. Bahaa-Eldin, E. A. R., Yusoff, I., Rahim, S. A., Wan Zuhairi, W. Y., and Abdul Ghani, M. R. (2008) Heavy metal contamination of soil beneath a waste disposal site at Dengkil, Selangor, Malaysia. Soil & Sediment Contamination. 17(5), 449-466.
Bettinelli, M., Beone, G. M., Spezia, S., and Baffi, C. (2000) Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta. 424(2), 289-296.
Chernova, O. V., and Bezuglova, O. S. (2019) Use of background concentrations of heavy metals for regional monitoring of soil contamination by the example of Rostov oblast. Eurasian Soil Science. 52(8), 1007-1017.
Clark, M. W., McConchie, D., Lewis, D. W., and Saenger, P. (1998) Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: A geochemical model. Chem. Geol. 149(3-4), 147–17.
Conklin, A. R. (2013) Introduction to soil chemistry: Analysis and instrumentation. John Wiley & Sons.
Deng, H. G., Zhang, J., Wang, D. Q., Chen, Z. L., and Xu, S. Y. (2010) Heavy metal pollution and assessment of the tidal flat sediments near the coastal sewage outfalls of Shanghai, China. Environ. Earth Sci. 60(1), 57–63.
Fagbenro, O. K. (2016) Leachate pollution and impact to environment: Control and treatment of landfill leachate for sanitary waste disposal. IGI Global.
Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A. H., Brągoszewska, P., Sieczka, A., and Osiński, P. (2016) Impact of the municipal solid waste łubna landfill on environmental pollution by heavy metals. Water. 8, 470.
Hakanson, L. (1980) An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 14(8), 975–1001.
Harjito, H., Suntoro, S., Gunawan, T., and Maskuri, M. (2018) Underground leachate distribution based on electrical resistivity in Piyungan Landfill, Bantul. Indonesian Journal of Geography.50(1), 34-40.
Liu, C., Cui, J., Jiang, G., Chen, X., Wang, L., and Fang, C. (2013) Soil heavy metal pollution assessment near the largest landfill of China. Soil and Sediment Contamination, An International Journal, 22(4), 390-403.
Loska, K., Cebula, J., Pelczar, J., Wiechula, D., and Kwapulinski, J. (1997) Use of enrichment, and contamination factors together with geo-accumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, Soil Pollut. 93(1), 347–365.
Parhusip, J. A., Harijoko, A., Putra, D. P. E., and Suryanto, W. (2017) Assessment of leachate infiltration from Piyungan landfill using electrical resistivity 3D method. AIP Conf. Proc. 1861(1), 030008.
Phonhalath, K. (2012) Hydrogeological control on fate and processes of heavy metal and organic chemical contaminants from landfill, case study: Piyungan Landfill, Yogyakarta Special Province, Indonesia, Disertasi Doktor, Yogyakarta, Fakultas Teknik, Universitas Gadjah Mada (unpublished).
Putra, D. P. E. (2001) Pencemaran air lindi (leachate) pada air tanah di area tempat pembuangan akhir sampah Piyungan dan sekitarnya, Kecamatan Piyungan, Kabupaten Bantul, Yogyakarta, Tesis, Yogyakarta, Fakultas Teknik, Universitas Gadjah Mada (unpublished).
Rahardjo, W., Sukandarrumidi., and Rosidi, H. M. D. (1995) Peta Geologi Lembar Yogyakarta, Scale 1 : 100.000, Bandung.Center of Geological Research and Development.
Ramadhan, F., DR, F. P., Firizqy, F., and Adji, T. N. (2019) Pendugaan Distribusi Air Lindi dengan Geolistrik Metode ERT di TPA Piyungan, Bantul, DIY, Majalah Geografi Indonesia, 33(1), 1-8.
Santos-Francés, F., Martínez-Graña, A., Alonso Rojo, P., and García Sánchez, A. (2017) Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the Andes mountain range (Cajamarca-Huancavelica, Peru). International journal of environmental research and public health. 14(8), 859.
Sartohadi, J., Widyastuti, M., and Lestari, I. S. (2017) Spreading of groundwater contaminated by leachate in the surrounding area of Piyungan Landfill Bantul District, Yogyakarta Province. Forum Geografi. 19(1), 16-29.
Schubauer-Berigan, M.K., Dierkes, J. R., Monson, P. D., and Ankley, G. T. (1993) pH-Dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella Azteca and Lumbriculus variegatus. Environ. Toxicol. Chem. 12(7), 1261–1266.
Sihombing, A. L., and Darmawan, R. (2020) Municipal solid waste characteristic and energy potential in Piyungan Landfill. Applied Mechanics and Materials. 898, 58-63.
Tchobanoglous, G., Theisen, H., and Vigil, S. (1993) Integrated solid waste management: Engineering principles and management issues. McGraw-Hill.
Vaverková, M. D. (2019) Landfill impacts on the environment. Geosciences. 9 (10), 431. Walkley, A., and Black, I. A. (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromicacid titration method. Soil Science. 37, 29-38.
Wang, X. Q., He, M. C., Xi, J., Xi, J. H., and Lu, X. F. (2010) Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). J. Soil. Sediment. 10(5), 827–837.
Wang, Y., and Wang, Y. G. (1992) The soil environmental background values in Shanghai, China. Environmental Science Press, Beijing.
Wuana, R. A., and Okieimen, F. E. (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices.
DOI: https://doi.org/10.22146/jag.65651
Article Metrics
Abstract views : 2061 | views : 1981Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Mufid Muyassar, Wawan Budianta
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Applied Geology Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.