Identification of Permeable Structures and Heat Source in the Geothermal Working Area of Galunggung Volcano and the Heat Source Connectivity to the Karaha-Cakrabuana Area Using Gravity Data

https://doi.org/10.22146/jag.60835

Leo Agung Prabowo(1), Salahuddin Husein(2*), Sismanto Sismanto(3)

(1) PT Fairbanc Technologies Indonesia. Gedung South Quarter Tower A, Lt. 18, Unit D-G Cilandak Barat
(2) Geological Engineering Departement, Universitas Gadjah Mada
(3) Geophysics SubDepartment, Department of Physics, Faculty of Mathematics and Science, Gadjah Mada University
(*) Corresponding Author

Abstract


Galunggung volcano area is a geothermal concession area that adjacent with Karaha-Cakrabuana concession area with a distance around 1 km. Indonesian Government planning to build power plant in 2025 so additional research needed to support the plan. Gravity survey could help in identifying permeable structure (fault) as well as heat source to a certain depth. The results of data processing showed the presence of faults seen on the FHD, SVD, and ABL residual maps, while for heat sources it was shown from the closed contour patterns on the ABL, residual, and regional maps. Derivative analysis in strengthens the position and type of fault from the match between the maximum FHD value and zero SVD value. From these results, identified the existence of three faults in the study area and were all identified as normal faults. 3D modelling gave a picture of density contrast in research area. From the section profile that pass through Galunggung and Telaga Bodas crater, heat source was interpreted as density with value 2.8 – 3.0 gr/cm3 and marked by orange to red color that coincide below Galunggung crater and continoued to Talaga Bodas crater at depths below -3000 masl. This indicate that both concession area was connected.

Keywords


Galunggung, Gravity Method, Derivative Analysis, 3D Model

Full Text:

PDF


References

Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications. New York: Cambridge University Press. 441 pages.

Bronto, S. (1989). Volcanic Geology of Galunggung, West Java, Indonesia. [Unpublished doctoral dissertation]. University of Canterbury, Canterbury, 343 pages.

Budhitrisna, T. (1990). Peta Geologi Lembar Tasikmalaya. Pusat Penelitian dan Pengembangan Geologi, Bandung, Jawa Barat, Indonesia

Fadillah, A., Nugraha, T., & Gumilar, J. (2013). West Java Geothermal Update [Paper presentation]. Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University, California.

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 353-431.

Henley, R., & Ellis, A. (1983). Geothermal Systems, Ancient and Modern: A Geochemical Review. Earth Science Reviews, 19, 1–50.

Hirt, C., Claessens, S., Fecher, T., Kuhn, M., Pail, R., & Rexer, M. (2013). New ultra-high resolution picture of Earth’s gravity field. Geophysical Research Letters, 40, 24 pages.

Jacoby, W., & Smilde, P.L. (2009) Gravity Interpretation: Fundamentals and Application of Gravity Inversion and Geological Interpretation. Springer-Verlag, Berlin, 395p.

Kementerian Energi dan Sumberdaya Mineral RI (2017) Potensi Panas Bumi Indonesia Jilid 1. Direktorat Panas Bumi, Direktorat Jenderal Energi Baru, Terbarukan dan Konservasi Energi Kementerian Energi dan Sumberdaya Mineral, Jakarta. 803p.

Lowrie, W. (2007). Fundamentals of Geophysics. Cambridge: Cambridge University Press. 362p.

Pirttijarvi, M. (2008). Grablox, Gravity Interpretation and Modelling Software Based on a 3-D Block Model, User’s Guide. University of Oulu Press, Oulu, 31p.

Pulunggono, A., & Martodjojo, S. (1994). Perubahan Tektonik Paleogen dan Neogen merupakan peristiwa terpenting di Jawa [Paper presentation, in Bahasa]. Prosiding Geologi dan Geoteknik Pulau Jawa sejak Akhir Mesozoic hingga Kuarter, Yogyakarta, page 37-50.

Ramadhan, Q., Sianipar, J., & Pratopo, A. (2016).Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano. The 5th ITB International Geothermal Workshop, 8 pages.

Reynolds, J.M. (2011). An Introduction to Applied and Environmental Geophysics. 2 Edition. John Wiley & Sons, Ltd., Oxford, 696p.

Tripp, A., Moore, J., Ussher, G., & McCulloch, J. (2002). Gravity Modelling of The Karaha-Telaga Bodas Geothermal System [Paper presentation]. Proceedings of the Twenty-seventh Workshop on Geothermal Reservoir Engineering, Stanford University Press, Stanford, pages 28-30.

Van Bemmelen, R. (1949). The Geology of Indonesia. Volume 1. Government Printing Office, The Hague, Netherlands, 766p.

Yosephin, M., Santoso, D., & Setianingsih. (2019). The Subsurface Modelling of KarahaTelaga Bodas Geothermal System using Gravity Method. IOP Conf. Ser.: Earth Environ. Sci. 318 012037.https://doi.org/10.1088/17551315/318/1/012037.



DOI: https://doi.org/10.22146/jag.60835

Article Metrics

Abstract views : 938 | views : 923

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Leo Agung Prabowo, Salahuddin Husein, Sismanto Sismanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal of Applied Geology Indexed by:

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.