Updated Segmentation Model of the Aceh Segment of the Great Sumatran Fault System in Northern Sumatra, Indonesia
Aulia Kurnia Hady(1), Gayatri Indah Marliyani(2*)
(1) Geological Engineering Department, Universitas Gadjah Mada
(2) Geological Engineering Department, Universitas Gadjah Mada
(*) Corresponding Author
Abstract
We study the Aceh Fault segment, the northernmost segment of the Great Sumatran Fault in western Indonesia. The Aceh Fault segment spans 250 km long, passing through three districts: West Aceh, Pidie Jaya, and Aceh Besar, a region of ~546,143 population. The current segmentation model assumes that the Aceh Fault segment acts as a single fault segment, which would generate closer to an M8 earthquake. This estimation is inconsistent with the ~M6–7 historical earthquake data. We conduct a detailed active fault mapping using an ~8 m resolution digital elevation model (DEM) of DEMNAS and sub-m DEM data from UAV-based photogrammetry to resolve this fault’s segmentation model. Our study indicates that the Aceh Fault is active and that the fault segment can be further divided into seven sub-segments: Beutong, Kuala Tripa, Geumpang, Mane, Jantho, Indrapuri, and Pulo Aceh. The fault kinematics identified in the field is consistent with right-lateral faulting. Our study’s findings provide new information to understand the fault geometry and estimate potential earthquakes’ maximum magnitude along the Aceh Fault segment. These are important for the development of seismic hazard analysis of the area.
Keywords
Full Text:
PDFReferences
Bennet, J.D., Brige, D.McC., Cameron, N.R., Djunuddin, A., Ghazali, S.A., Jeffery, D.H., Kartawa, W., Keats, W., Rock, N.M.S., Thosmson, S.J., Whandoyo, R. 1981. Peta Geological Map of Banda Aceh Sheet, scale 1 : 250.000. Indonesian Geological Research and Development Center.
Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T. and Bangash, H.A. 2014. Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69, pp.163-178.
Burbank, D. W. and Anderson, R. S. 2012. Tectonic Geomorphology. Wiley-Blackwell. UK. 454 hal.
Cameron, N.R., Bennett, J.D., Bridge, D.Mc.C., Clarke, M.C.G., Djunuddin, A., Ghazali, S.A., Harahap, H., Jeffery, D.H., Kartawa, W., Keats, W., Ngabito, H., Rocks, N.M.S., and Thompson, S.J. 1983. Geological Map of Takengon Sheet, Sumatra, scale 1 : 250.000. Indonesian Geological Research and Development Center.
Curray, J. R. 2005. Tectonics and history of Andaman Sea region. J. Asian Earth Sci., 25, 187–232.
Curray, J. R., D. G. Moore, L. A. Lawver, F. J. Emmel, R. W. Raitt, M. Henry, and R. Kieckhefer. 1979. Tectonics of Andaman Sea and Burma, in Geological and Geophysical Investigations of Continental Margins, edited by J. S. Watkins, L. Montadert, and P. W. Dickerson, pp. 189–198, Amer. Assoc. Petrol. Geol. Memoir 29, Tulsa, Okla.
Darman, H., Sidi, F.H. 2000. An outline of The Indonesia. Indonesian Geologist Association (IAGI), Jakarta.
Daryono, M, R., Natawidjaja, D, D., and Sieh, K. 2012. Twin-Surface Ruptures of the March 2007 M > 6 Earthquake Doublet on the Sumatran Fault. Bulletin of the Seismological Society of America, Vol. 102, No. 6, pp. 2356–2367.
Duman, T. Y., Emre, O. 2013. The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society. London, Special Publications published online February 19, 2013 as doi:10.1144/SP372.14.
Fernández-Blanco, D., Philippon, M., and von Hagke, C. 2016. Structure and kinematics of the Sumatran Fault System in North Sumatra (Indonesia). Tectonophysics 693 (2016) 453–464.
Ferrater, M., Ortuño, M., Masana, E., Martínez-Díaz, J.J., Pallàs, R., Perea, H., Baize, S., García-Meléndez, E., Echeverria, A., Rockwell, T., Sharp, W.D., and Arrowsmith, R. 2017. Lateral slip rate of Alhama de Murcia fault (SE Iberian Peninsula) based on a morphotectonic analysis: Comparison with paleoseismological data. Quaternary International, 451, 87- 100.
Harris, R. A. & Day, S. M. 1993. Dynamics of fault interaction—parallel strike-slip faults. J. Geophys. Res. 18, 4461–4472.
Marliyani. G. I., J. Arrowsmith. R., and Whipple. K. X. 2016. Characterization ofslow slip rate faults in humid areas:Cimandiri fault zone, Indonesia. J. Geophys. Res. Earth Surf., 121,doi:10.1002/2016JF003846.
Marliyani. G. I. 2016. Neotectonics of Java, Indonesia: Crustal deformation in the overriding plate of an orthogonal subduction system. doctoral dissertation, Arizona State Univrsity.
Marta. F., Arrowsmith. R., and Masana. E. 2015. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula). Remote Sens. 2015, 7(11), 14827-14852; https://doi.org/10.3390/rs71114827.
Moechtar. H., Subiyanto., and Sufianto. 2009. Geologi alluvium dan karakter endapan pantai/pematang pantai di lembah Krueng Aceh, Aceh Besar. Pusat Survey Geologi.
Sieh. K., and Natawidjaja, D. 2000. Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research, 105(B12) : 28295. doi:10.1029/2000JB900120.
Singh. S. C., Moeremans. R., McArdle. J., and Johansen. K. 2013. Seismic images of the sliver strike-slip fault and back thrust in the Andaman-Nicobar region. J. Geophys. Res. Solid Earth, 118, 5208–5224, doi:10.1002/jgrb.50378.
Stirling, M. W., M. C. Gerstenberger, N. J. Litchfield, G. H. McVerry, W. D. Smith, J. Pettinga, and P. Barnes. 2008. Seismic hazard of the Canterbury region, New Zealand: New earthquake source model and methodology. Bull. N. Z. Soc. Earthquake Eng., 41, 51–67.
Tabei, T., Kimata. K., Ito. T., Gunawan. E., Tsutsumi. H., Ohta. Y., Yamashina. T., Soeda. Y., Ismail. N., Nurdin. I., Sugiyanto. D., and Meilano. I. 2015. Geodetic and Geomorphic Evaluations of Earthquake Generation Potential of the Northern Sumatran Fault, Indonesia. International Association of Geodesy Symposia, DOI 10.1007/1345_2015_200.
Umar, M., Irwandi., Rusydy. I., Muzli., Erbas. K., Marwan., Asrillah., Muzakir., and Ismail. N. 2018. Investigation of Aceh Segment and Seulimeum Fault by using seismological data; A preliminary result. The International Conference on Theoretical and Applied Physics, doi :10.1088/1742-6596/1011/1/012031.
Vasuki, Y., Holden, E-J., Kovesi, P., and Micklethwaite, S., 2014. Semi-automatic mapping of geological Structures using UAV-based photogrammetric data: An image analysis approach. Computers and Geosciences, 69, 22-32. DOI: 10.1016/j.cageo.2014.04.012.
Wesnousky, S. G. 2006. Predicting the endpoints of earthquake ruptures. Nature, 444 (7117), : 358–360. http://doi.org/10.1038/nature05275.
Zielke, O., Y. Klinger, and J. R. Arrowsmith. 2015. Fault slip and earthquake recurrence along strike-slip faults—Contributions of high-resolution geomorphic data. Tectonophysics, 638, 43–62, doi:10.1016/j.tecto.2014.11.004.
DOI: https://doi.org/10.22146/jag.56134
Article Metrics
Abstract views : 3344 | views : 2594Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Aulia Kurnia Hady, Gayatri Indah Marliyani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Applied Geology Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.