Utilization of Remote Sensing and Geographic Information System to Identify Buffer Zones Area at Plumpang Fuel Depot

https://doi.org/10.22146/ijg.85036

Cahyadi Setiawan(1*), Ode Sofyan Hardi(2), Fauzi Ramadhoan A'Rachman(3), Lyzia Nabilla(4), Andi Wiranata(5), Zidan Furqon(6), Fadia Salsabillah(7), Ibnu Adam Maulana(8), Muhammad Wahyu Wardana(9), Muhammad Deffry(10)

(1) Geography Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(2) Geography Education Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(3) Geography Education Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(4) Geography Education Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(5) Geography Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(6) Geography Education Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(7) Geography Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(8) Geography Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(9) Geography Education Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(10) Geography Study Program, Faculty of Social Sciences, Universitas Negeri Jakarta, Indonesia
(*) Corresponding Author

Abstract


Plumpang is a national vital object surrounded by residential areas in its vicinity. This study aims to identify buffer zones at the Pertamina Plumpang BBM Depot. The method used in this research is Spatio Temporal Analysis with secondary data from the land-use map of Jakarta, Google Earth imagery from 2002 to 2022, and Landsat 4 imagery from 1990. The results show that at distances of 50 meters, 50-100 meters, and 100-250 meters, there are 503, 870, and 2554 buildings, respectively. Furthermore, these buildings are predominantly very dense residential areas. Due to the highly concentrated population and the proximity to the depot, the area faces a high risk of fire disasters given the flammable nature of the fuel. The proximity of the settlement to the fuel depot has a direct correlation with the heightened risk of a fire disaster. The buffer zone distance used in the range of 50 - 100 meters to ensure the safety of the population from potential fire disasters. The designated buffer zone can be effectively transformed into a hydrological flow or water channel serving as a separator and barrier between the fuel depot and residential areas.


Keywords


Buffer Zone, Buildings DistriBuffer Zone; Buildings Distribution; Fire Disasters; Plumpang Fuel Depotbution, Fire Disasters, Plumpang Fuel Depot

Full Text:

PDF


References

Abdulsalam, A., Kabir, R., & Arafat, S. M. Y. (2016). Assessment of Fire Safety Preparedness in Selected Health Institutions in Niger State. International Journal of Perceptions in Public Health, 1(11), 50–58.

Al-Dousari, A. E., Mishra, A., & Singh, S. (2023). Land use land cover change detection and urban sprawl prediction for Kuwait metropolitan region, using multi-layer perceptron neural networks (MLPNN). Egyptian Journal of Remote Sensing and Space Science, 26(2), 381–392. https://doi.org/10.1016/j.ejrs.2023.05.003

Atkinson, G. (2017). Buncefield: Lessons learned on emergency preparedness. Loss Prevention Bulletin, 254, 23–28.

Batista-Abreu, J. C., & Godoy, L. A. (2013). Thermal Buckling Behavior of Open Cylindrical Oil Storage Tanks under Fire. Journal of Performance of Constructed Facilities, 27(1), 89–97. https://doi.org/10.1061/(asce)cf.1943-5509.0000309

Chaiklieng, S., Dacherngkhao, T., Suggaravetsiri, P., & Pruktharathikul, V. (2020). Fire risk assessment in fire hazardous zones of gasoline stations. Journal of Occupational Health, 62(1). https://doi.org/10.1002/1348-9585.12137

Chang, J. I., & Lin, C. C. (2006). A study of storage tank accidents. Journal of Loss Prevention in the Process Industries, 19(1), 51–59. https://doi.org/10.1016/j.jlp.2005.05.015

Chhetri, S. . K., & Kayastha, P. (2015). Manifestation of an Analytic Hierarchy Process ( AHP ) Model. ISPRS International Journal of Geo-Information, 4, 400–417. https://doi.org/10.3390/ijgi4010400

Cvetkovi, V. M., Jankovi, B., Nikoli, N., & Milo, P. (2022). International Journal of Disaster Risk Reduction Fire safety behavior model for residential buildings : Implications for disaster risk reduction. International Journal of Disaster Risk Reduction, 76(November 2021). https://doi.org/10.1016/j.ijdrr.2022.102981

Hamatuli, M., & Muchanga, M. (2021). Social Perspectives on the Effects of Buffer Zone Anthropogenic Activities on Mashili Reservoir of Shibuyunji District , Central. International Journal of Humanities Social Sciences and Education (IJHSSE) Volume, 8(11), 102–109. https://doi.org/https://doi.org/10.20431/2349-0381.0811013

Herbert, C., & Butsic, V. (2022). Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses. Fire, 5(2). https://doi.org/10.3390/fire5020044

Hoek, M. R., Bracebridge, S., & Oliver, I. (2007). Health impact of the Buncefield oil depot fire , December Study of accident and emergency case records. Journal of Public Health, 29(3), 298–302. https://doi.org/10.1093/pubmed/fdm036

Ibrahim, H. ., & Syed, H. S. (2019). Hazard Analysis of Crude Oil Storage Tank Farm Hazard Analysis of Crude Oil Storage Tank Farm. International Journal of ChemTech Research, 11(November 2018), 300–308. https://doi.org/10.20902/IJCTR.2018.111132

Iglesias, V., Stavros, N., Balch, J. K., Barrett, K., Cobian-Iñiguez, J., Hester, C., Kolden, C. A., Leyk, S., Nagy, R. C., Reid, C. E., Wiedinmyer, C., Woolner, E., & Travis, W. R. (2022). Fires that matter: Reconceptualizing fire risk to include interactions between humans and the natural environment. Environmental Research Letters, 17(4). https://doi.org/10.1088/1748-9326/ac5c0c

Iojă, C. I., & Tudor, C. A. (2012). Temporal Analysis of Incompatible Land-Use and Land-Cover: The Proximity between Residential Areas and Gas Stations in Bucharest Suburban Area. Procedia Environmental Sciences, 14, 49–58. https://doi.org/10.1016/j.proenv.2012.03.006

Kurnianti, D. N., Rustiadi, E., & Baskoro, D. P. T. (2015). Land Use Projection for Spatial Plan Consistency in Jabodetabek. Indonesian Journal of Geography, 47(2), 124–131. https://www.researchgate.net/publication/310613079

Law, A., & Bisby, L. (2020). The rise and rise of fire resistance. Fire Safety Journal, 116, 103188. https://doi.org/10.1016/j.firesaf.2020.103188

Li, H., & Huang, X. (2021). Gis-Based Fire Risk Spatial Assessment for Semiconductor Plant. IOP Conference Series: Earth and Environmental Science, 772(1). https://doi.org/10.1088/1755-1315/772/1/012080

Li, L., & Dai, L. (2021). Review on fire explosion research of crude oil storage tank. E3S Web of Conferences, 236, 1–7. https://doi.org/10.1051/e3sconf/202123601022

Liu, K., Wu, D., Xia, J., Chen, W., Chen, G., Liu, J., & Li, H. (2021). Risk Evaluation Indicator System for Lightning Disaster in Oil Storage Depots. IOP Conference Series: Earth and Environmental Science, 859(1). https://doi.org/10.1088/1755-1315/859/1/012114

Lv, R., Liu, Y., Zhang, L., & Kong, D. (2022). Urban historic heritage buffer zone delineation: the case of Shedian. Heritage Science, 10(1), 1–15. https://doi.org/10.1186/s40494-022-00702-9

Nicholas, M., & Whitfield, A. (2013). The Buncefield Accident and the Environmental Consequences for Fuel Storage Sites and other Sites in the UK , Regulated under the Seveso Directive The Buncefield Accident and the Environmental Consequences for Fuel Storage Sites and other Sites in the UK. CHEMICAL ENGINEERING TRANSACTIONS, 31(January 2013). https://doi.org/10.3303/CET1331077

Ornai, A., Ne’eman, G., & Keasar, T. (2020). Management of forest fire buffer zones: Implications for flowering plants and bees. Forest Ecology and Management, 473(August 2019). https://doi.org/10.1016/j.foreco.2020.118310

Putri, R. F., Wibirama, S., Giyarsih, S. R., Pradana, A., & Kusmiati, Y. (2019). Landuse change monitoring and population density analysis of Penjaringan, Cengkareng, and Cakung Urban Area in Jakarta Province. E3S Web of Conferences, 76. https://doi.org/10.1051/e3sconf/20197603004

Rasel, Biswas, Khan, F., & Yang, M. (2015). Scenario based hazard identification of a gas Station in Arctic Region. Proceedings of the National Academy of Sciences, 3(1), 1–15. http://dx.doi.org/10.1016/j.bpj.2015.06.056%0Ahttps://academic.oup.com/bioinformatics/article-abstract/34/13/2201/4852827%0Ainternal-pdf://semisupervised-3254828305/semisupervised.ppt%0Ahttp://dx.doi.org/10.1016/j.str.2013.02.005%0Ahttp://dx.doi.org/10.10

Sagala, S., Wimbardana, R., & Pratama, F. P. (2016). Behavior and Preparedness to Fire Hazard in High Density Settlements in Bandung. Forum Geografi, 28(1), 1–20. https://doi.org/10.23917/forgeo.v28i1.433

Setiawan, C., Handawati, R., & Ermalia. (2020). Analysis of Influence Settlement Density on the Fire Hazards Settlement at Cengkareng Subdistrict, West Jakarta. IOP Conference Series: Earth and Environmental Science, 412(1). https://doi.org/10.1088/1755-1315/412/1/012011

Sharma, R. K., Gurjar, B. R., Wate, S. R., Ghuge, S. P., & Agrawal, R. (2013). Assessment of an accidental vapour cloud explosion: Lessons from the Indian Oil Corporation Ltd. accident at Jaipur, India. Journal of Loss Prevention in the Process Industries, 26(1), 82–90. https://doi.org/10.1016/j.jlp.2012.09.009

Shristi Vidusha, R., Sharath, D., Yadav, B. P., & Nandan, A. (2018). Case Study on Vapour Cloud Explosions (Buncefield and Jaipur Explosion)—A Review. In Springer Transactions in Civil and Environmental Engineering (pp. 135–147). https://doi.org/10.1007/978-981-10-7281-9_11

Singapore Civil Defence Force SCDF. (2012). Singapore Fire Code 2007 : Fire Safety Requirements for Petroleum Service Station. 1–13.

Sutrisno, H. H., Wibawa, B., Triyono, T., Amiruddin, J., Kusumohadi, C. S., Setyadi, P., & Yoga, N. G. (2021). The identification of fire potentials in oil mining area on Minas Sumatera Operations-Indonesia by manual assessment method. IOP Conference Series: Materials Science and Engineering, 1098(6), 062093. https://doi.org/10.1088/1757-899x/1098/6/062093

Taridala, S., Yudono, A., Ramli, M. I., & Akil, A. (2017). Expert System Development for Urban Fire Hazard Assessment. Study Case: Kendari City, Indonesia. IOP Conference Series: Earth and Environmental Science, 79(1). https://doi.org/10.1088/1755-1315/79/1/012035

Thomas, G. O. (2018). Buncefield: A possible alternative multi-stage route to localised overpressure generation. Process Safety and Environmental Protection, 119(August), 253–260. https://doi.org/10.1016/j.psep.2018.08.003

Turner, W. C., Périquet, S., Goelst, C. E., Vera, K. B., Cameron, E. Z., Alexander, K. A., Belant, J. L., Cloete, C. C., du Preez, P., Getz, W. M., Hetem, R. S., Kamath, P. L., Kasaona, M. K., Mackenzie, M., Mendelsohn, J., Mfune, J. K. E., Muntifering, J. R., Portas, R., Scott, H. A., … Kilian, J. W. (2022). Africa’s drylands in a changing world: Challenges for wildlife conservation under climate and land-use changes in the Greater Etosha Landscape. Global Ecology and Conservation, 38(February). https://doi.org/10.1016/j.gecco.2022.e02221

Twigg, J., Christie, N., Haworth, J., Osuteye, E., & Skarlatidou, A. (2017). Improved methods for fire risk assessment in low-income and informal settlements. International Journal of Environmental Research and Public Health, 14(2). https://doi.org/10.3390/ijerph14020139

Winandari, M. I. R., Wijayanto, P., & Faradila. (2021). Fire risk based on building density in dense settlement. IOP Conference Series: Earth and Environmental Science, 780(1). https://doi.org/10.1088/1755-1315/780/1/012053

Zavareh, R. D., Dana, T., Roayaei, E., Monavari, S. M., & Jozi, S. A. (2022). The Environmental Risk Assessment of Fire and Explosion in Storage Tanks of Petroleum Products. Journal Sustainability (MDPI), 1–17. https://doi.org/https://doi.org/10.3390/su141710747

Zhang, H. (2020). Research on Building Fire Risk Management Based on BIM. IOP Conference Series: Earth and Environmental Science, 571(1). https://doi.org/10.1088/1755-1315/571/1/012067

Zhou, Y., Zhao, X., Zhao, J., & Chen, D. (2016). Research on Fire and Explosion Accidents of Oil Depots. CHEMICAL ENGINEERINGTRANSACTIONS, 51, 163–168. https://doi.org/10.3303/CET1651028

Zvyagintseva, A. V., Mezhova, L. A., Sazonova, S. A., Stenyukhin, L. V., & Chertkov, P. V. (2021). Prognostication of fire of oil and oil products storage tank farms and engineering and technical solutions. Journal of Physics: Conference Series, 2094(5). https://doi.org/10.1088/1742-6596/2094/5/052030



DOI: https://doi.org/10.22146/ijg.85036

Article Metrics

Abstract views : 1682 | views : 609

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Cahyadi Setiawan, ode Sofyan Hardi, Fauzi Ramadhoan A'Rachman, Lyzia Nabilla, Andi Wiranata, Zidan Furqon, Fadia Salsabillah, Ibnu Adam Maulana, Muhammad Wahyu Wardana, Muhammad Deffry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC