The Impact of the Interaction between Madden-Julian Oscillation and Cold Surge, on Rainfall over Western Indonesia

Agita Vivi Wijayanti(1*), Rahmat Hidayat(2), Akhmad Faqih(3), Furqon Alfahmi(4)

(1) Department of Geophysics and Meteorology, IPB University
(2) Department of Geophysics and Meteorology, IPB University
(3) Department of Geophysics and Meteorology, IPB University
(4) Agency for Meteoorlogy, CLimatology, and Geophysics
(*) Corresponding Author


The Madden-Julian Oscillation and Cold Surge phenomena have been known to cause increased rainfall, with the capacity to trigger hydrometeorological disasters, in western Indonesia. However, further investigations are required regarding the interaction between these phenomena on rainfall pattern. Therefore, this study aims to analyze the interaction between MJO and CS over western Indonesia, particularly by using land-based rainfall observation data from multiple stations, as previous studies were dominated by the use of gridded data from remote observations. This study utilized in-situ observation data obtained from 4329 weather observations and rain stations between 1989 and 2018.  Subsequently, quality control performed based on data availability exceeding 70% over a 30-year period resulted in 303 selected stations to be used for further analysis. Meanwhile, the RMM index, as well as reanalysis data of mean sea level pressure and 925 hPa meridional wind, were also applied for MJO and CS identification. According to the composite analysis, the effect of CS on MJO phases tends to increase precipitation by about 50%, over western Indonesia, with maximum increase ranging from 200 to 400% over the northeastern coast of Sumatra, around Karimata Strait (Riau Islands and West Kalimantan), as well as the northern coast of Java. These areas are exposed to the sea and have direct access to the wind-terrain interaction. In addition, the highest rainfall anomaly due to the MJO-CS interaction occurs around Karimata Strait, followed by northern Sumatra and Java, with spatially averaged rainfall anomaly reaching 5 mm/day over the area.


MJO; CS; Rainfall Observation; Western Indonesia, Vorticity

Full Text:



Abdillah, M. R., Kanno, Y., & Iwasaki, T. (2018). Tropical-extratropical interactions associated with East Asian cold air outbreaks. Part II: Intraseasonal variation. Journal of Climate, 31(2), 473–490.

Abdillah, M. R., Kanno, Y., Iwasaki, T., & Matsumoto, J. (2021). Cold surge pathways in east Asia and their tropical impacts. Journal of Climate, 34(1), 157–170.

Ahn, M. S., Kim, D., Ham, Y. G., & Park, S. (2020). Role of maritime continent land convection on the mean state and MJO propagation. Journal of Climate, 33(5), 1659–1675.

Aldrian, E., & Utama, G. S. A. (2010). Identifikasi dan Karakteristik Seruak Dingin (Cold Surge) tahun 1995-2003. Jurnal Sains Dirgantara.

Becker, E. J., Berbery, E. H., & Higgins, R. W. (2011). Modulation of cold-season U.S. Daily precipitation by the Madden-Julian oscillation. Journal of Climate, 24(19), 5157–5166.

Chang, C. P., Harr, P. A., & Chen, H. J. (2005). Synoptic Disturbances over the Equatorial South China Sea and Western Maritime Continent during Boreal Winter. Monthly Weather Review, 133, 489–503.

Chang, C. P., & Lau, K. M. W. (1979). Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part I: Synoptic Aspects. In Monthly Weather Review (Vol. 108, Nomor 3, hal. 298–312).<0298:NCSANE>2.0.CO;2

Chang, C. P., Lu, M. M., & Lim, H. (2016). Monsoon Convection in the Maritime Continent: Interaction of Large-Scale Motion and Complex Terrain. Meteorological Monographs, 56, 6.1-6.29.

Chen, X., Li, C., & Tan, Y. (2017). Further inquiry into characteristics of MJO in boreal winter. International Journal of Climatology, 37(12), 4451–4462.

Choi, H. Y., Ha, J. H., Lee, D. K., & Kuo, Y. H. (2011). Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case. Asia-Pacific Journal of Atmospheric Sciences, 47(3), 265–279.

Darand, M., & Mirzaei, N. (2018). The relationships between precipitation amounts, number of rain days, and relative vorticity in the mid-troposphere over Iran. Weather, 2005, 1–9.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.

DeMott, C. A., Wolding, B. O., Maloney, E. D., & Randall, D. A. (2018). Atmospheric Mechanisms for MJO Decay Over the Maritime Continent. Journal of Geophysical Research: Atmospheres, 123(10), 5188–5204.

Doswell, C. A., Brooks, H. E., & Maddox, R. A. (1996). Flash flood forecasting: An ingredients-based methodology. Weather and Forecasting, 11(4), 560–581.<0560:FFFAIB>2.0.CO;2

Feng, J., Li, T., & Zhu, W. (2015). Propagating and nonpropagating MJO events over maritime continent. Journal of Climate, 28(21), 8430–8449.

Fujita, M., Yoneyama, K., Mori, S., Nasuno, T., & Satoh, M. (2011). Diurnal convection peaks over the eastern Indian Ocean off sumatra during different MJO phases. Journal of the Meteorological Society of Japan, 89(A), 317–330.

Hattori, M., Mori, S., & Matsumoto, J. (2011). The cross-equatorial northerly surge over the maritime continent and its relationship to precipitation patterns. Journal of the Meteorological Society of Japan, 89(A), 27–47.

Heo, J. W., Ho, C. H., Park, T. W., Choi, W., Jeong, J. H., & Kim, J. (2018). Changes in cold surge occurrence over East Asia in the future: Role of thermal structure. Atmosphere, 9(6), 1–16.

Hidayat, R. (2016). Modulation of Indonesian Rainfall Variability by the Madden-julian Oscillation. Procedia Environmental Sciences, 33, 167–177.

Holton, J. R. (2004). An Introduction to Dynamic Meteorology (4 ed.). Academic Press.

Jeong, Jee Hoon, Ho, C. H., Kim, B. M., & Kwon, W. T. (2005). Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in east Asia. Journal of Geophysical Research D: Atmospheres, 110(11), 1–7.

Jeong, Jong Hoon, Lee, D. I., Wang, C. C., & Han, I. S. (2016). Characteristics of mesoscale-convective-system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Natural Hazards and Earth System Sciences, 16(4), 927–939.

Kim, D., Kim, H., & Lee, M. I. (2017). Why does the MJO detour the Maritime Continent during austral summer? Geophysical Research Letters, 44(5), 2579–2587.

L’Heureux, M. L., & Higgins, R. W. (2008). Boreal winter links between the Madden-Julian oscillation and the arctic oscillation. Journal of Climate, 21(12), 3040–3050.

Lafleur, D. M., Barrett, B. S., & Henderson, G. R. (2015). Some climatological aspects of the Madden-Julian oscillation (MJO). Journal of Climate, 28(15), 6039–6053.

Li, G., Yang, D., Jiang, X., Pan, J., & Tan, Y. (2017). Diagnosis of moist vorticity and moist divergence for a heavy precipitation event in Southwestern China. Advances in Atmospheric Sciences, 34(1), 88–100.

Lim, S. Y., Marzin, C., Xavier, P., Chang, C. P., & Timbal, B. (2017). Impacts of boreal winter monsoon cold surges and the interaction with MJO on southeast Asia rainfall. Journal of Climate, 30(11), 4267–4281.

Matthews, A. J., Pickup, G., Peatman, S. C., Clews, P., & Martin, J. (2013). The effect of the Madden-Julian Oscillation on station rainfall and river level in the Fly River system, Papua New Guinea. Journal of Geophysical Research Atmospheres, 118(19), 10,926-10,935.

Muhammad, F. R., Lubis, S. W., & Setiawan, S. (2021). Impacts of the Madden–Julian oscillation on precipitation extremes in Indonesia. International Journal of Climatology, 41(3), 1970–1984.

Nuryanto, D. E., Pawitan, H., Hidayat, R., & Aldrian, E. (2019). Characteristics of two mesoscale convective systems (MCSs) over the Greater Jakarta: case of heavy rainfall period 15–18 January 2013. Geoscience Letters, 6(1), 1–15.

Pang, B., Lu, R., & Ling, J. (2018). Impact of cold surges on the Madden-Julian oscillation propagation over the Maritime Continent. Atmospheric Science Letters, 19(10), 1–7.

Peatman, S. C., Matthews, A. J., & Stevens, D. P. (2014). Propagation of the Madden-Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quarterly Journal of the Royal Meteorological Society, 140(680), 814–825.

Pramuwardani, I., Hartono;, Sunarto;, & Sopaheluwakan, A. (2018). The Influence of Madden-Julian Oscillation on Local Scale Phenomena over Indonesia during The Western North Pacific and Australian Monsoon Phase. Forum Geografi, 31(December 2018), 156–169.

Pullen, J., Gordon, A. L., Flatau, M., Doyle, J. D., Villanoy, C., & Cabrera, O. (2015). Journal of Geophysical Research : Atmospheres rainfall in the Philippines. Journal of Geophysical Research Atmospheres, 120(December 2000), 3292–3309.

Rauniyar, S. P., & Walsh, K. J. E. (2011). Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. Journal of Climate, 24(2), 325–348.

Sudiar, N. Y. (2013). Analisis Periode Ulang Banjir di Kota Padang Menggunakan Cara Iwai dan Kaitannya dengan MJO (Madden Julian Oscillation). Sainstek, V(December 2013), 103–110.

Tung, W. W., Giannakis, D., & Majda, A. J. (2014). Symmetric and antisymmetric convection signals in the Madden-Julian oscillation. Part I: Basic modes in infrared brightness temperature. Journal of the Atmospheric Sciences, 71(9), 3302–3326.

Wang, L., Kodera, K., & Chen, W. (2012). Observed triggering of tropical convection by a cold surge: Implications for MJO initiation. Quarterly Journal of the Royal Meteorological Society, 138(668), 1740–1750.

Wheeler, M. C., & Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132(8), 1917–1932.<1917:AARMMI>2.0.CO;2

Woo, S. H., Kim, B. M., Jeong, J. H., Kim, S. J., & Lim, G. H. (2012). Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979-2011). Journal of Geophysical Research Atmospheres, 117(17), 1–16.

Wu, P., Arbain, A. A., Mori, S., Hamada, J. I., Hattori, M., Syamsudin, F., & Yamanaka, M. D. (2013). The effects of an active phase of the Madden-Julian Oscillation on the extreme precipitation event over western Java Island in January 2013. Scientific Online Letters on the Atmosphere, 9(1), 79–83.

Xavier, P., Lim, S. Y., Bin Abdullah, M. F. A., Bala, M., Chenoli, S. N., Handayani, A. S., Marzin, C., Permana, D., Tangang, F., Williams, K. D., & Yik, D. J. (2020). Seasonal dependence of cold surges and their interaction with the madden–julian oscillation over Southeast Asia. Journal of Climate, 33(6), 2467–2482.

Xavier, P., Rahmat, R., Cheong, W. K., & Wallace, E. (2014). Influence of Madden-Julian Oscillation on Southeast Asia rainfall extremes: Observations and predictability. Geophysical Research Letters, 41(12), 4406–4412.

Zhang, C., & Ling, J. (2017). Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. Journal of Climate, 30(9), 3439–3459.


Article Metrics

Abstract views : 4314 | views : 2185


  • There are currently no refbacks.

Copyright (c) 2021 Agita Vivi Wijayanti, Rahmat Hidayat, Akhmad Faqih, Furqon Alfahmi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)