Accuracy of The Level of Critical Water Catchment Area for Flood Mitigation Around Bengkulu City, Indonesia

https://doi.org/10.22146/ijg.62037

Bambang Sulistyo(1*), Hery Suhartoyo(2), Teguh Adiprasetyo(3), Kanang Setyo Hindarto(4), Noviyanti Listyaningrum(5)

(1) Faculty of Agriculture, University of Bengkulu, Kandang Limun, Bengkulu
(2) Faculty of Agriculture, University of Bengkulu, Kandang Limun, Bengkulu
(3) Faculty of Agriculture, University of Bengkulu, Kandang Limun, Bengkulu
(4) Faculty of Agriculture, University of Bengkulu, Kandang Limun, Bengkulu
(5) Graduate School, University of Gadjah Mada, Bulaksumur, Yogyakarta
(*) Corresponding Author

Abstract


Disaster mitigation activities require the availability of a potentially flooded area (PFA) map. One of the causes of flooding is the criticality of water catchment areas; the higher the criticality level, the higher the flooding potential. This study aims to determine the accuracy of the model for determining the PFA around Bengkulu City, which was derived from the Level of Critical Water Catchment Area (LCWCA) model developed by the Ministry of Forestry. After obtaining the LCWCA Map, another analysis was performed in order to obtain the PFA Map. Furthermore, the overlaying was carried out with the Existing Flood Map in such a way that the level of accuracy is known. The threshold values from Justice are used to justify the level of accuracy in three categories, namely Good (> 85%), Moderate (70 - 85%), and Poor (<70%). The results showed that in the eight sub-watersheds around the city of Bengkulu, there were two sub-watersheds with reasonable accuracy (> 85%), which means that there was > 85% overlap between areas on the Potentially Flooded Area Map as a result of the analysis of The LCWCA with the area on the Existing Flood Map. There are three sub-watersheds with Moderate accuracy (70 - 85%) and three sub-watersheds with Poor accuracy (<70%)


Keywords


flood mitigation; flood disaster; water catchment; accuracy

Full Text:

PDF


References

BNPB (2020). Data Kejadian Bencana (Disaster Event Data). Pusat Data Informasi dan Humas. Badan Nasional Penanggulangan Bencana. Jakarta.

Chang, K. T. (2008). Introduction to Geographic Information Systems, McGraw-Hill International Edition, New York, USA

Daels & Antrop. (1981). Remote Sensing; Fundamental International Training Centre for Post Graduate Soil Scientist, Seminar of Regional Geography, State University of Ghent, Belgium.

DeMers, M. N. (2008). Fundamental of Geographic Information Systems. New York: John Wiley & Sons.

Gibbs, H. K. & Salmon, J. M. (2015). Mapping the world's degraded lands. Journal of Applied Geography, 57, 12-21.

Guvil, Q., Driptufany, D.M., & Ramadhan, S. (2018). Analisis Potensi Daerah Resapan Air Kota Padang (Analysis of the Potential of Water Infiltration in Padang City), National Geomatics Seminar 2018: Use and Development of Geospatial Information Products to Support National Competitiveness, 671-680.

Hadmoko, D. S. (2007). Toward GIS-based integrated landslide hazard assessment: a critical overview. Indonesian Journal of Geography, 39, 55-77.

Hastono, F. D., Sudarsono, B. & Sasmito, B. (2012). Identifikasi Daerah Resapan Air Dengan Sistem Informasi Geografis, Studi Kasus: Sub DAS Keduang (Identification of Infiltration Areas by using Geographical Information Systems, Case Study: Keduang Sub-watershed). Diponegoro University. Semarang.

Hindarto, K.S., Hidayat, M.F., & Depari, E.K. (2013). Aplikasi Sistem Informasi Geografis Untuk Pemodelan Spasial Disain Tata Guna Lahan Dan Lemau Berdasarkan Tingkat Kekritisan Daerah Resapan (Geographical Information System Application for Spatial Modeling of Land Use Design and Lemau Based on the Level of Critical Water Catchment Area), Competitive Grant Research Report, LPPM, Bengkulu University

Mase, L. Z. (2020). Slope Stability and Erosion-Sedimentation Analyses Along Sub-watershed of Muara Bangkahulu River in Bengkulu City, Indonesia. In E3S Web of Conferences (Vol. 148, p. 03002). EDP Sciences.

Mase, L. Z., & Fathona, G. (2017), Estimation soil layers for some areas in Bengkulu City based on CPT approach, Teknosia, 3, 40-46.

Ministry of Forestry. (2009). Peraturan Menteri Kehutanan RI Nomor : P. 32/Menhut-II/2009 tentang Tata Cara Penyusunan Rencana Teknik Rehabilitasi Hutan dan Lahan DAS (Regulation of the Minister of Forestry of the Republic of Indonesia Number: P. 32 / Menhut-II / 2009 concerning Procedures for the Preparation of Technical Plans for Forest and Watershed Rehabilitation). Jakarta, Ministry of Forestry.

Narulita, I., Rahmat, A. & Maria, R. (2008). Aplikasi Sistem Informasi Geografi untuk Menentukan Daerah Prioritas Rehabilitasi di Cekungan Bandung (Geographic Information System Application for Determining Priority Areas for Rehabilitation in the Bandung Basin). Jurnal Riset Geologi dan Pertambangan, 18, 23-35.

Nurohmah, A., Priadmojo, A., Dewi, M. K., Satria, M. R., & Saputra, N. (2014). Analysis of Regional Development in Connection with Multi Disaster Susceptibility in Bengkulu Province, Procedia-Social and Behavioral Sciences, 135, 70-75.

Oluwasegun, A.H. (2017). GIS Analysis of Flood Vulnerable Area in Benin–Owena River Basin Nigeria, Indonesian Journal of Geography, 49, 27-33.

Purwandari , T., Hadi, M.P., & Kingma, N.C. (2011). A GIS Modelling Approach For Flood Hazard Assessment in part of Surakarta City, Indonesian Journal of Geography, 43, 63-80.

Rhochim, R. (2017). Identifikasi Daerah Resapan Air Dengan Menggunakan Sistem Informasi Geografis Di Kabupaten Sukoharjo (Identification of Water Infiltration Areas Using Geographical Information Systems in Sukoharjo Regency), Undergraduate Thesis, Faculty of Geography, Muhammadiyah University of Surakarta

Rosyidie, A. (2013). Banjir: Fakta dan Dampaknya, serta Pengaruh dari Perubahan Guna Lahan (Floods: Facts and Impacts, and Effects of Land Use Change. Journal of Urban and Regional Planning). Jurnal Perencanaan Wilayah dan Kota, 24, 241 – 249.

Sekaranom, A.B., Nurjani, E., Harini, R., & Muttaqin, S. (2020). Simulation of Daily Rainfall Data using Articulated Weather Generator Model for Seasonal Prediction of ENSO-Affected Zones in Indonesia, Indonesian Journal of Geography, 52, 143-153.

Stehman, S.V. & Czaplewsky, R.L. (1997). Design and Analysis for Thematic Map Accuracy Assessment: Fundamental Principles, Remote Sensing of Environment, 64, 331-344.

Sulistyo, B. (2011).The effect of choosing different contour interval on a fully raster-based erosion modeling (The case in Merawu Watershed, Banjarnegara, Central Java). Jurnal Tanah Tropika, 16, 258-266.

Sulistyo, B. (2015). Pemodelan faktor K berbasis raster sebagai masukan pemodelan erosi Di DAS Merawu, Banjarnegara, Provinsi Jawa Tengah (Raster-based K factor modeling as an input for erosion modeling in the Merawu watershed, Banjarnegara, Central Java Province), Jurnal Manusia dan Lingkungan 22, 240-246

Sulistyo, B., Gunawan, T., Hartono & Danoedoro, P. (2009). Toward a fully and absolutely raster-based erosion modeling by using RS and GIS. Indonesian Journal of Geography, 41:149-70.

Sulistyo, B., Gunawan, T., Hartono & Danoedoro, P. (2011). Pemetaan faktor C yang diturunkan dari berbagai indeks vegetasi data penginderaan jauh sebagai masukan pemodelan erosi di DAS Merawu (Mapping the C factor derived from various vegetation indices from remote sensing data as input for modeling erosion in the Merawu watershed). Jurnal Manusia dan Lingkungan, 18:68-78.

Sulistyo, B., Gunawan, T., Hartono & Danoedoro, P. (2013). Pemodelan persentase tajuk di DAS Merawu yang diturunkan dari berbagai indeks vegetasi data penginderaan jauh (Modeling of the percentage of canopy in the Merawu watershed derived from various vegetation indexes from remote sensing data). Forum Geografi, , 23-32.

Sulistyo, B., Gunawan, T., Hartono, Danoedoro, P. & Martanto, R. (2017). Proposed Model on Levels of Degraded Land At Merawu Watershed, Banjarnegara Regency, Central Java Province, Indonesia, Biotropia, 24, 220-229.

Sulistyo, B., Purnama, D., Anggraini, M.& Listyaningrum, N. (2020); Validating The Fully Raster-Based Suitability Model for Sea Cucumber (Holothuria scabra), IOP Conf. Ser.: Mater. Sci. Eng. 874 012035, July 2020.

Sulistyo, B., Purnama, D., Anggraini, M., Hartono, D., Wilopo, M.D., Wulandari, U., & Listyaningrum, N. (2018). Refining The Suitability Modeling of Sea Cucumber (Holothuria scabra) Using Fully Raster-Based Data, Forum Geografi, 1, 119-130.

Sulistyo. B. (2011). Pengaruh erosivitas hujan yang diperoleh dari rumus yang berbeda terhadap pemodelan erosi berbasis raster (Effect of rain erosivity obtained from different formulae on raster-based erosion modeling). Agritech, 31, 250-259.

Suryanto, D. (2016). Tanah Airku Salah Kelola Hujan (My Motherland Manages the Rain Wrongly). Yogyakarta.

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis, Environmental Modelling & Software, 90, 202-214.

Tjasyono, B., Juaeani, I. & Harijono. S. W. B. (2007). Proses Meteorologis Bencana Banjir di Indonesia (Meteorological Process of Flood Disaster in Indonesia). Jurnal Meteorologi dan Geofisika, 8, 64 – 78.

Tsakiris, G. (2014). Flood risk assessment: concepts, modelling, applications, Nat. Hazards Earth Syst. Sci. Discuss, 2, 261–286.

Wahyuni, Arsyad, U., Bachtiar, B. & Irfan, B. (2017). Identifikasi Daerah Resapan Air di Sub Daerah Aliran Sungai Malino Hulu Daerah Aliran Sungai Jeneberang Kabupaten Gowa (Identification of Watershed Areas in the Upper Malino Watershed in the Jeneberang River Basin, Gowa Regency). Jurnal Hutan dan Masyarakat, 9, 93-104.

Wang, G., Wente, S., Gertner, G. Z. & Anderson, A. (2002). Improvement in mapping vegetation cover factor for the universal soil loss equation by geostatistical methods with Landsat Thematic Mapper images. International Journal of Remote Sensing, 23, 3649-3667.

Wibowo, M. (2006). Model Penentuan Kawasan Resapan Air Untuk Perencanaan Tata Ruang Berwawasan Lingkungan (Water Infiltration Area Determination Model for Environmentally Friendly Spatial Planning). Jurnal Hidrosfer, 1, 1-7.

Wischmeier, W. H. & Smith, D. D. (1978), Predicting Rainfall Erosion Losses : A Guide to Conservation Planning. Washington DC: USDA Agriculture Handbook.



DOI: https://doi.org/10.22146/ijg.62037

Article Metrics

Abstract views : 2295 | views : 1460

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Bambang - Sulistyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC