Topography changes and thermal distribution at the Kelud crater after the 2014 Plinian eruption

https://doi.org/10.22146/ijg.51986

Wahyudi Wahyudi(1), Ari Setiawan(2), Heriansyah Putra(3), Herlan Darmawan(4*), Imam Suyanto(5), Irwan Meilano(6), Irzaman irzaman(7), Maria Evita(8), Mitra Djamal(9), Moh Yasin(10), Nina Siti Aminah(11), Perdinan Perdinan(12), Retna Apsari(13), Wahyu Srigutomo(14), Wiwit Suryanto(15)

(1) Laboratory of Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia
(2) Laboratory of Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
(3) Department of Civil Engineering and Environtment, Faculty of Engineering, Bogor Agricultural University, Indonesia
(4) Laboratory of Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia
(5) Laboratory of Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia
(6) Geodesy Research Group, Faculty of Earth Science and Technology, Bandung Institute of Technology, Indonesia
(7) Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Indonesia
(8) Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
(9) Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
(10) Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia.
(11) Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
(12) Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Indonesia
(13) Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia.
(14) Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
(15) Laboratory of Geophysics, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281 Indonesia
(*) Corresponding Author

Abstract


Topography of a volcano crater can change due to endogenic processes such as deformation or eruption, or surface processes. Erosion and deposition are surface processes that may occur and gradually change the slope of the inner volcano crater. Here, we investigated erosion and deposition processes that occurred in the Kelud crater after the 2014 plinian eruption. We used high-resolution Digital Elevation Models (DEMs) and orthomosaic images derived by drone photogrammetry that acquired between September 2018 and July 2019. We obtained hundreds of aerial images which were reconstructed to obtain 3D models of Kelud’s crater by using Structure from Motion (SfM) technique. Results show erosions at alluvial fans that dominantly located at the east valleys of Kelud crater. The erosion removed the volcanic materials up to -5 m which transported and deposited close to the vicinity of the Kelud crater. The deposition process causes the increase of the Kelud crater lake up to 3 m. Moreover, we also mapped the thermal distribution of the Kelud crater lake by using low cost thermal camera. Our thermal investigation is able to identify some hotspots at the vicinity of the Kelud crater lake with range temperature of 43.7°C – 55.3°C, while the average apparent temperature of the Kelud crater lake is ~ 29°C. This high temperature area may indicate underwater active fractures that continuously release volcanic gasses which leads to convection heat transfer through Kelud’s water lake.


Keywords


Kelud volcano; erosion; deposition; Crater lake; thermal distribution

Full Text:

PDF


References

Caudron, C., Ohba, T., & Capaccioni, B. (2017). Geochemistry and geophysics of active volcanic lakes: An introduction. Geological Society Special Publication, 437, 1-8. doi:10.1144/SP437.18

Darmawan, H., Walter, T. R., Brotopuspito, K. S., Subandriyo, & Nandaka, I. G. M. A. (2018). Morphological and structural changes at the Merapi lava dome monitored in 2012–15 using unmanned aerial vehicles (UAVs). Journal of Volcanology and Geothermal Research, 349, 256-267. doi:10.1016/j.jvolgeores.2017.11.006

Darmawan, H., Walter, T. R., Richter, N., & Nikkoo, M. (2017). High resolution Digital Elevation Model of Merapi summit in 2015 generated by UAVs and TLS. GFZ Data Services. doi:http://doi.org/10.5880/GFZ.2.1.2017.003

Darmawan, H., Walter, T. R., Troll, V. R., & Budi-Santoso, A. (2018). Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption. Natural Hazards and Earth System Sciences, 18(12), 3267-3281. doi:10.5194/nhess-18-3267-2018

De Beni, E., Cantarero, M., & Messina, A. (2019). UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. Journal of Volcanology and Geothermal Research, 369, 250-262. doi:10.1016/j.jvolgeores.2018.12.001

Derrien, A., Peltier, A., Villeneuve, N., & Staudacher, T. (2020). The 2007 caldera collapse at Piton de la Fournaise: new insights from multi-temporal structure-from-motion. Volcanica, 3(1), 55-65. doi:https://doi.org/10.30909/vol.03.01.5565

Fisher, R. V., & Smith, G. A. (1991). Volcaniclastic Processes of Transport and Deposition Sedimentation in Volcanic Settings (Vol. 45, pp. 0): SEPM Society for Sedimentary Geology.

Goode, L. R., Handley, H. K., Cronin, S. J., & Abdurrachman, M. (2018). Insights into eruption dynamics from the 2014 pyroclastic deposits of Kelut volcano, Java, Indonesia, and implications for future hazards. Journal of Volcanology and Geothermal Research. doi:10.1016/j.jvolgeores.2018.02.005

Gunkel, G., Beulker, C., Grupe, B., & Viteri, F. (2008). Hazards of volcanic lakes: Analysis of Lakes Quilotoa and Cuicocha, Ecuador. Advances in Geosciences, 14, 29-33. doi:10.5194/adgeo-14-29-2008

Hidayati, S., Basuki, A., Kristianto, & Mulyana, I. (2009). Emergence of Lava Dome from the Crater Lake of Kelud Volcano, East Java. Jurnal Geologi Indonesia, 4, 229 - 238.

Hidayati, S., Triastuty, H., Mulyana, I., Adi, S., Ishihara, K., Basuki, A., Kuswandarto, H., Priyanto, B., Solikhin, A. (2018). Differences in the seismicity preceding the 2007 and 2014 eruptions of Kelud volcano, Indonesia. Journal of Volcanology and Geothermal Research. doi:10.1016/j.jvolgeores.2018.10.017

James, M., Carr, B., D'Arcy, F., Diefenbach, A., Dietterich, H., Fornaciai, A., Lev, E., Liu E., Pieri D., Rodgers, M., Smets, B., Terada, A., Aulock, F., Walter T. R., Wood, K., Zorn, E. (2020). Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges. Volcanica, 67-114. doi:10.30909/vol.03.01.67114

Kasbani, Gunawan, H., McCausland, W., Pallister, J., Iguchi, M., & Nakada, S. (2019). The eruptions of Sinabung and Kelud volcanoes, Indonesia. Journal of Volcanology and Geothermal Research, 5-9. doi:10.1016/j.jvolgeores.2019.07.008

Kling, G. W., Clark, M. A., Wagner, G. N., Compton, H. R., Humphrey, A. M., Devine, J. D., Evans, W. C., Lockwood, J. P., Tuttle, M. L., Koenigsberg, E. J. (1987). The 1986 Lake Nyos Gas Disaster in Cameroon, West Africa. Science, 236, 169-175. doi:10.1126/science.236.4798.169

Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26. doi:10.1016/j.isprsjprs.2013.04.009

Maeno, F., Nakada, S., Yoshimoto, M., Shimano, T., Hokanishi, N., Zaennudin, A., & Iguchi, M. (2016). A sequence of a plinian eruption preceded by dome destruction at Kelud volcano, Indonesia, on February 13, 2014, revealed from tephra fallout and pyroclastic density current deposits. Journal of Volcanology and Geothermal Research, 1951. doi:10.1016/j.jvolgeores.2017.03.002

Manville, V., Hodgson, K. A., & Nairn, I. A. (2007). A review of break-out floods from volcanogenic lakes in New Zealand. New Zealand Journal of Geology and Geophysics, 50, 131-150. doi:10.1080/00288300709509826

Mastin, L. G., & Witter, J. B. (2000). The hazards of eruptions through lakes and seawater. Journal of Volcanology and Geothermal Research, 97, 195 - 214.

McGonigle, A. J. S., Aiuppa, A., Giudice, G., Tamburello, G., Hodson, A. J., & Gurrieri, S. (2008). Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophysical Research Letters, 35. doi:10.1029/2007GL032508

Nawiyanto, & Sasmita, N. (2019). The eruption of Mount Kelud in 1919: Its impact and Mitigation Efforts. Paper presented at the 1st International Conference on Social Sciences and Interdisciplinary Studies (ICSSIS).

Sri Hadmoko, D., Samsu Rijal, S., Arida, V., Ratih, Mertiara., Herumurti, S., Estuningtyas, W. M., Dyah Rachmawati, H. (2015). Lahar impact to the landuse along Konto river after Kelud eruption 2014. Paper presented at the 7th International Graduate Students and Scholars Conference in Indonesia (IGSSCI), Universitas Gadjah Mada, Yogyakarta.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. 1 - 979.

Van Padang, M. N. (1960). Measures taken by the authorities of the vulcanological survey to safeguard the population from the consequences of volcanic outbursts. Bulletin Volcanologique, 23(1), 181-192. doi:10.1007/BF02596643

Waythomas, C. F. (2001). Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska. Geomorphology, 39, 111 - 129.



DOI: https://doi.org/10.22146/ijg.51986

Article Metrics

Abstract views : 18948 | views : 2187

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Wahyudi Wahyudi, Ari Setiawan, Heriansyah Putra, Herlan Darmawan, Imam Suyanto, Irwan Meilano, Irzaman irzaman, Maria Evita, Mitra Djamal, Moh Yasin, Nina Siti Aminah, Perdinan Perdinan, Retna Apsari, Wahyu Srigutomo, Wiwit Suryanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Accredited Journal, Based on Decree of the Minister of Research, Technology and Higher Education, Republic of Indonesia Number 225/E/KPT/2022, Vol 54 No 1 the Year 2022 - Vol 58 No 2 the Year 2026 (accreditation certificate download)

ISSN 2354-9114 (online), ISSN 0024-9521 (print)

Web
Analytics IJG STATISTIC