Object Detection Based on You Look Only Once Version 8 for Real-Time Applications

https://doi.org/10.22146/ijccs.94843

Gede Agus Santiago(1), Putu Sugiartawan(2*), Ni Nengah Dita Ardriani(3)

(1) Program Studi Rekayasa Sistem Komputer, Institut Bisnis dan Teknologi Indonesia, Bali
(2) Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia, Bali
(3) Program Studi Teknik Informatika, Institut Bisnis dan Teknologi Indonesia, Bali
(*) Corresponding Author

Abstract


This research focus to involves human detection in crowded situations, especially in the lecturer's room. The lecturer's room is very vulnerable because it can be accessed by anyone with only one entry and exit to the lecturer's room, so it would be perfect to place this Yolo camera in front of the lecturer's room so that incoming and outgoing activities can be monitored during work days on campus. The main challenge is how the system can distinguish individuals in dense crowds and identify their relative locations to each other. In this context, it is necessary to find a solution that can overcome the uncertainty of recognizing individuals in a group and accurately understand the location and distance between them. One proposed solution is to use the YOLO algorithm on video recordings to detect human objects in the lecturer's room during working hours. This research introduces the YOLOv8 model, a real-time detection system with high speed and accuracy in detecting and classifying objects in video recordings. YOLOv8 can accurately detect object movement, making it an efficient real-time framework for dealing with complex objects. This research experiment involved using eight different smartphone devices to collect datasets. Using various smartphone devices aims to test object detection performance under various shooting conditions, including variations in image quality, lighting, shooting angle, and camera resolution. The research results show that using multiple smartphone devices in dataset collection can improve the robustness and accuracy of object detection models. By integrating datasets from various sources and shooting conditions, the YOLOv8 model was successfully trained to better recognize objects in different situations, even in campus environments that often have challenges such as weather variations and lighting fluctuations. The test results show an accuracy rate of 93.33% in human object detection



Keywords


Object detection; human detection; YOLOV8; Accuration;

Full Text:

PDF


References

[I] Munadhif, D. Hasbi Fathoni, dan Mohammad Abu Jamiin, T. Otomasi, and J. Teknik Kimia, “Pengendalian CCTV Menggunakan You Only Look Once (YOLO),” Seminar Nasional Terapan Riset Inovatif (SENTRINOV) Ke-6 ISAS Publishing Series: Engineering and Science, vol. 6, no. 1, 2020. [2] T. Hidayat, R. F. Firmansyah, M. Ilham, M. N. Yazid, and P. Rosyani, “Analisis Kinerja Dan Peningkatan Kecepatan Deteksi Kendaraan Dalam Sistem Pengawasan Video Dengan Metode YOLO,” JRIIN : Jurnal Riset Informatika dan Inovasi, vol. 1, no. 2, 2023, [Online]. Available: https://jurnalmahasiswa.com/index.php/jriin [3] J. H. Sri Wisna et al., “Jurnal Sustainable: Jurnal Hasil Penelitian dan Industri Terapan,” vol.09, no. 01, pp. 8–14, 2020. [4] Feri Agustina, “Deteksi Kematangan Buah Pepaya Menggunakan Algoritma YOLO BerbasisAndroid ,” 2022. [5] B. Z. Ramadhan, I. Riza, and I. Maulana, “Analisis Sentimen Ulasan Pada Aplikasi E- Commerce Dengan Menggunakan Algoritma Naïve Bayes,” 2022. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC [6] A. Roihan, A. A. Wisanto, Y. Sulaeman, M. Nur, S. Williandi, and W. Pribadi, “Implementasi Metode Realtime, Live Data Dan Parsing JSON Berbasis Mobile Dengan Menggunakan Android Studio Dan PHP Native,” 2019. [Online]. Available: http://ejournal.urindo.ac.id/index.php/TI [7] O. E. Karlina and D. Indarti, “Pengenalan Objek Makanan Cepat Saji Pada Video Dan Real Time Webcam Menggunakan Metode You Look Only Once (YOLO),” Jurnal Ilmiah Informatika Komputer, vol. 24, no. 3, pp. 199–208, 2019, doi: 10.35760/ik.2019.v24i3.2362. [8] E. Restu Justitian, I. Yuniar Purbasari, and F. Tri Anggraeny, “Perbandingan Akurasi Deteksi Kelelahan pada Pengendara Menggunakan YOLOv3-Tiny YOLOv4-Tiny,” 2022. [9] Z. S. Jannah and F. A. Sutanto, “Implementasi Algoritma YOLO (You Only Look Once) Untuk Deteksi Rias Adat Nusantara,” Jurnal Ilmiah Universitas Batanghari Jambi, vol. 22, no. 3, p. 1490, Oct. 2022, doi: 10.33087/jiubj.v22i3.2421. [10] A. Walidani et al., “Systematic Literature Review Deteksi Kendaraan Menggunakan Metode YOLO.” [11] L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” 2021.



DOI: https://doi.org/10.22146/ijccs.94843

Article Metrics

Abstract views : 543 | views : 390

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2