Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction

https://doi.org/10.22146/ijccs.90149

Putu Sugiartawan(1*), Yusril Eka Saputra(2), Agus Qomaruddin Munir(3)

(1) INSTITUT BISNIS DAN TEKNOLOGI INDONESIA
(2) INSTITUT BISNIS DAN TEKNOLOGI INDONESIA
(3) Fakultas Teknik, Universitas Negeri Yogyakarta
(*) Corresponding Author

Abstract


The retail company PT Terang Abadi Raya has a solid commitment to supporting distributors of LED lights and electrical equipment who have joined them, helping to spread their products widely in various regions. To face increasingly intense market competition, it is essential to produce high-quality products to win the competition and meet consumer demands. To achieve this, efficient production planning is necessary. The Convolutional Long Short-Term Memory (C-LSTM) method is used in this study to forecast product sales at PT Terang Abadi Raya. The research results show that C-LSTM has the potential to predict sales effectively. Evaluation is conducted using Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). The calculations reveal that the smallest values are obtained at epoch 10, with an MAE of 0.1051 and a MAPE of 22% in the testing data. For the cable data, the smallest values are found at epoch 100, with an MAE of 0.0602 and a MAPE of 44% in the testing data. The Long Short-Term Memory (LSTM) method with ten neurons produces the most minor errors during training.

Keywords


Prediction; Retail Business; Convolutional Long Short-Term Memory

Full Text:

PDF


References

M. L. Ashari and M. Sadikin, “Prediksi Data Transaksi Penjualan Time Series Menggunakan Regresi Lstm,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 1, 2020, doi: 10.23887/janapati.v9i1.19140. [2] F. Kurniawan and R. Ramadhan Harahap Fakultas Sains Dan Teknologi, “JURNAL INFORMASI KOMPUTER LOGIKA Penerapan Metode Regresi Linier Untuk Prediksi Plat Cetakan pada PT. XYZ,” vol. 2, 2022, [Online]. Available: http://ojs.logika.ac.id/index.php/jikl [3] G. N. Ayuni and D. Fitrianah, “Penerapan metode Regresi Linear untuk prediksi penjualan properti pada PT XYZ,” J. Telemat., vol. 14, no. 2, pp. 79–86, 2019, [Online]. Available: https://journal.ithb.ac.id/telematika/article/view/321 [4] M. Galih, P. D. Atika, and Mukhlis, “Prediksi Penjualan Menggunakan Algoritma Regresi Linear Di Koperasi Karyawan ‘Usaha Bersama,’” J. Inform. Inf. Secur., vol. 3, no. 2, pp. 193–202, 2023, doi: 10.31599/jiforty.v3i2.1354. [5] E. Rohadi, R. Wakhidah, and A. R. El-amien, “Sistem Peramalan Penjualan Studi Kasus Topi Punggul H . M . Thoha dengan Metode Trend,” Semin. Inform. Apl. Polinema, p. 6, 2021, [Online]. Available: jurnalti.polinema.ac.id [6] P. Padi and D. Buleleng, “Prediksi Sebaran Hama Padi Dengan Metode LSTM Pada Pertanian Padi Di Buleleng 1,2,3,” vol. 5, no. 1, pp. 43–52, 2022, doi: 10.33173/jsikti.176. [7] M. L. Ashari and M. Sadiki, “Prediksi Data Transaksi Penjualan Time Series Menggunakan Regresi LSTM,” Janapati, vol. Volume 9, no. ISSN 2089-8673, 2020. [8] X. Shi, Z. Chen, H. Wang, and D.-Y. Yeung, “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,” Hong Kong University of Science and Technology, 2018. [9] A. Khumaidi, R. Raafi’udin, and I. P. Solihin, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” J. Telemat., vol. 15, no. 1, pp. 13–18, 2020. [10] D. E. Tarkus, S. R. U. A. Sompie, and A. Jacobus, “Implementasi Metode Recurrent Neural Network pada Pengklasifikasian Kualitas Telur Puyuh,” J. Tek. Inform., vol. 15, no. 2, pp. 137–144, 2020. [11] Y. Widhiyasana, T. Semiawan, I. G. A. Mudzakir, and M. R. Noor, “Convolutional Long Short-Term Memory Implementation for Indonesian News Classification,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. Vol. 10, N, no. ISSN 2301 – 4156, 2021. [12] Y. Widhiyasana, T. Semiawan, I. Gibran, A. Mudzakir, and M. R. Noor, “Penerapan Convolutional Long Short-Term Memory untuk Klasifikasi Teks Berita Bahasa Indonesia (Convolutional Long Short-Term Memory Implementation for Indonesian News Classification),” J. Nas. Tek. Elektro dan Teknol. Inf. |, vol. 10, no. 4, pp. 354–361, 2021.



DOI: https://doi.org/10.22146/ijccs.90149

Article Metrics

Abstract views : 958 | views : 724

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2