Application of Extreme Learning Machine Method With Particle Swarm Optimization to Classify of Heart Disease
Adela Putri Ariyanti(1*), Muhammad Itqan Mazdadi(2), Andi - Farmadi(3), Muliadi Muliadi(4), Rudy Herteno(5)
(1) Universitas Lambung Mangkurat
(2) Universitas Lambung Mangkurat
(3) Universitas Lambung Mangkurat
(4) Universitas Lambung Mangkurat
(5) Universitas Lambung Mangkurat
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
A. N. Sari and S. Alfionita, “Klasifikasi Penyakit Jantung Menggunakan Metode Naïve Bayes,” AMRI (Analisa Metod. Rekayasa Inform., vol. 1, no. 1, pp. 22–26, 2022, doi: 10.12487/AMRI.v1i1.xxxxx. [2] A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019, doi: 10.35760/tr.2019.v24i3.2393. [3] A. A. Syafitri Hidayatul AA, Yuita Arum S, “Seleksi Fitur Information Gain untuk Klasifikasi Penyakit Jantung Menggunakan Kombinasi Metode K-Nearest Neighbor dan Naïve Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, pp. 2546–2554, 2018, [Online]. Available: http://j-ptiik.ub.ac.id [4] M. K. Nasution, R. R. Saedudin, and V. P. Widartha, “Perbandingan Akurasi Algoritma Naïve Bayes Dan Algoritma Xgboost Pada Klasifikasi Penyakit Diabetes,” e-Proceeding Eng., vol. 8, no. 5, pp. 9765–9772, 2021, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15759 [5] B. Gbadamosi, R. O. Ogundokun, E. A. Adeniyi, S. Misra, and N. F. Stephens, “Medical Data Analysis for IoT-Based Datasets in the Cloud Using Naïve Bayes Classifier for Prediction of Heart Disease,” Internet of Things, no. September, pp. 365–386, 2022, doi: 10.1007/978-3-031-05528-7_14. [6] N. A. Sugianto, I. Cholissodin, and A. W. Widodo, “Klasifikasi Keminatan Menggunakan Algoritme Extreme Learning Machine dan Particle Swarm Optimization untuk Seleksi Fitur (Studi Kasus: Program Studi Teknik Informatika FISugianto, N. A., Cholissodin, I., & Widodo, A. W. (2018). Klasifikasi Keminatan Mengg,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 5, pp. 1856–1865, 2018. [7] R. R. Wahid, F. T. Anggraeny, and B. Nugroho, “Implementasi Metode Extreme Learning Machine untuk Klasifikasi Tumor Otak pada Citra Magnetic Resonance Imaging,” Pros. Semin. Nas. Inform. Bela Negara, vol. 1, pp. 16–20, 2020, doi: 10.33005/santika.v1i0.45. [8] I. Larasati, “Analisa Perbandingan Data Mining Pada Klasifikasi Penyakit Jantung Menggunakan Algoritma Extreme Learning Machine (Elm) Dan K-Nearest Neighbor (K-NN),” p. 1, 2021. [9] A. A. Altae and A. Ehsani Rad, “Diagnosing heart disease by a novel hybrid method: Effective learning approach,” Informatics Med. Unlocked, vol. 40, no. March, p. 101275, 2023, doi: 10.1016/j.imu.2023.101275. [10] V. V. Nurdiansyah, I. Cholissodin, and P. P. Adikara, “Klasifikasi Penyakit Tuberkulosis ( TB ) menggunakan Metode Extreme Learning Machine ( ELM ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 5, pp. 1387–1393, 2020, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7237 [11] F. A. B. Darmayanti Eka Yuni, Budi Dharma Setiawan, “Particle Swarm Optimization Untuk Optimasi Bobot Extreme Learning Machine Dalam Memprediksi Produksi Gula Kristal Putih Pabrik Gula,” vol. 2, no. 11, pp. 5096–5104, 2018. [12] L. Nilawati and Y. E. Achyani, “Optimasi Metode Particle Swarm Optimization (PSO) Pada Prediksi Penilaian Apartemen,” vol. 21, no. 2, pp. 227–234, 2019, doi: 10.31294/p.v20i2.
DOI: https://doi.org/10.22146/ijccs.86291
Article Metrics
Abstract views : 1225 | views : 792Refbacks
- There are currently no refbacks.
Copyright (c) 2023 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1