Analyze the Clustering and Predicting Results of Palm Oil Production in Aceh Utara
Mutammimul Ula(1*), Gita Perdinanta(2), Rahmad Hidayat(3), Ilham Sahputra(4)
(1) Information System, Malikussaleh University, Lhokseumawe
(2) Information System, Malikussaleh University, Lhokseumawe
(3) Department of Information Technology and Computer, Politeknik Negeri Lhokseumawe, Lhokseumawe
(4) Information System, Malikussaleh University, Lhokseumawe
(*) Corresponding Author
Abstract
PT. Perkebunan Nusantara 1 is engaged in oil palm production with a total land area of 1,144 Ha. The formulation of this research can determine productive land clusters based on land area, number of trees, number of stages, and palm oil production. Methodological steps include plantation area data and oil palm production data. This study can compare the C-means and K-means groups. As for predictions using the Backpropagation Neural Network (BPNN) algorithm and Fuzzy time series for production results. The results of grouping Cot girek palm oil production data for the 2019-2022 period from January to December were 1,365,530, while in 2022 it reached 1,768,720. The analysis used a land grouping method of 1,144 hectares, which resulted in 800.4 hectares of productive land and 343.6 hectares of less effective land. The results of the C-menas clustering model are more than K-meas with shorter iterations while for predictions it has an accuracy rate of 90.77%. As a comparison, the level of accuracy of the fuzzy time series is 81.27%. The results of this study can be used as recommendations for companies in the analysis of productive land grouping analysis and forecast results from these lands.
Keywords
Full Text:
PDFReferences
[1] “Analisis Ekspor Minyak Kelapa Sawit (CPO) Indonesia | Abidin | Jurnal Aplikasi Manajemen.”
[2] “Kementan : Produksi Minyak Sawit Diperkirakan,” p. 2021, 2021.
[3] S. Bari, T. H. Lim, and C. W. Yu, “Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine,” Renew. Energy, vol. 27, no. 3, pp. 339–351, Nov. 2002, doi: 10.1016/S0960-1481(02)00010-1.
[4] A. Nurkholis and I. S. Sitanggang, “Optimalisasi model prediksi kesesuaian lahan kelapa sawit menggunakan algoritme pohon keputusan spasial,” J. Teknol. dan Sist. Komput., vol. 8, no. 3, pp. 192–200, Jul. 2020, doi: 10.14710/JTSISKOM.2020.13657.
[5] D. F. Pasaribu, I. S. Damanik, E. Irawan, Suhada, and H. S. Tambunan, “Memanfaatkan Algoritma K-Means Dalam Memetakan Potensi Hasil Produksi Kelapa Sawit PTPN IV Marihat,” BIOS J. Teknol. Inf. dan Rekayasa Komput., vol. 2, no. 1, pp. 11–20, 2021, doi: 10.37148/bios.v2i1.17.
[6] L. D. Yulianto, A. Triayudi, and I. D. Sholihati, “Implementation Educational Data Mining For Analysis of Student Performance Prediction with Comparison of K-Nearest Neighbor Data Mining Method and Decision Tree C4.5,” J. Mantik, vol. 4, no. 1, pp. 441–451, May 2020.
[7] J. Sains dan Teknologi, P. Satya Saputra, G. Rasben Dantes, and I. Gede Aris Gunadi, “Perbandingan Algoritma Fuzzy C-Means Dan Algoritma Naive Bayes Dalam Menentukan Keluarga Penerima Manfaat (Kpm) Berdasarkan Status Sosial Ekonomi (Sse) Terendah,” JST (Jurnal Sains dan Teknol., vol. 10, no. 1, pp. 1–8, Mar. 2021, doi: 10.23887/JSTUNDIKSHA.V10I1.23340.
[8] N. Agustina and P. Prihandoko, “Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 621–626, 2018, doi: 10.29207/resti.v2i3.492.
[9] A. Latifa, R. Putri, and N. Dwidayati, “Analisa perbandingan k-means dan fuzzy c-means dalam pengelompokan daerah penyebaran COVID-19 Indonesia,” Unnes J. Math., vol. 10, no. 2, pp. 50–55, Dec. 2021, doi: 10.15294/UJM.V10I2.50433.
[10] M. C. Bagdatlı and O. Arslan, “Classification And Mapping Of Land Use And Some Soil Properties In Kirşehir Province, Turkey,” Int. J. Eng. Technol. Manag. Res., vol. 8, no. 8, pp. 81–93, Sep. 2021, doi: 10.29121/IJETMR.V8.I8.2021.1022.
[11] G. F. Fan, Y. H. Guo, J. M. Zheng, and W. C. Hong, “A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back-propagation neural network for mid-short-term load forecasting,” J. Forecast., vol. 39, no. 5, pp. 737–756, Aug. 2020, doi: 10.1002/FOR.2655.
[12] W. D. H. Hendra Effendi, Ahmad Syahrial, Sefran Prayoga, “Penerapan Metode K-Means Clustering untuk Pengelompokan Lahan Sawit Produktif pada PT Kasih Agro Mandiri,” Teknomatika, vol. 11, no. 02, pp. 117–126, 2021.
[13] H. Aini, H. Haviluddin, E. Budiman, M. Wati, and N. Puspitasari, “Prediksi Produksi Minyak Kelapa Sawit Menggunakan Metode Backpropagation Neural Network,” Sains, Apl. Komputasi dan Teknol. Inf., vol. 1, no. 1, p. 24, 2019, doi: 10.30872/jsakti.v1i1.2261.
[14] A. Octaviani and P. Dewi, “Big Data di Perpustakaan dengan Memanfaatkan Data Mining,” Anuva J. Kaji. Budaya, Perpustakaan, dan Inf., vol. 4, no. 2, pp. 223–230, Jun. 2020, doi: 10.14710/ANUVA.4.2.223-230.
[15] S. B. Faradilla, “Komparasi Analisis K-Medoids Clustering dan Hierarchical Clustering (Studi Kasus: Data Kriminalitas di Indonesia Tahun 2020),” Apr. 2022.
[16] A. Nofiar, S. Defit, and Sumijan, “Penentuan Mutu Kelapa Sawit Menggunakan Metode K-Means Clustering,” Jurnal KomtekInfo, vol. 5, no. 3. pp. 1–9, 2019. doi: 10.35134/komtekinfo.v5i3.26.
[17] F. W. Nugraha, S. Fauziati, and A. E. Permanasari, “SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN VARIETAS KELAPA SAWIT DENGAN METODE FUZZY C-MEANS,” Pros. SENIATI, vol. 3, no. 1, p. B25. 1-8, 2017, doi: 10.36040/SENIATI.V3I1.1761.
[18] A. R. Lubis, S. Prayudani, Y. Fatmi, Al-Khowarizmi, Julham, and Y. Y. Lase, “Measurement of Detection Rate Accuracy in Forecasting Crude Palm Oil Production using Fuzzy Time Series,” 2021 2nd Int. Conf. Innov. Creat. Inf. Technol. ICITech 2021, pp. 20–24, Sep. 2021, doi: 10.1109/ICITECH50181.2021.9590172.
[19] Rasna, I. W. Sudarsana, and D. Lusiyanti, “Forecasting Of Crude Palm Oil By Using Fuzzy Time Series Method (Study Case : PT. Buana Mudantara Plantation),” Param. J. Stat., vol. 1, no. 1, pp. 31–40, Jan. 2021, doi: 10.22487/27765660.2021.V1.I1.15442.
[20] M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.
[21] D. L. Rahakbauw, V. Y. I. Ilwaru, and M. H. Hahury, “Implementasi Fuzzy C-Means Clustering Dalam Implementation Of Fuzzy C-Means Clustering In,” J. Ilmu Mat. dan Terap., vol. 11, pp. 1–12, 2017.
[22] Y. H. Syahputra and J. Hutagalung, “Superior Class to Improve Student Achievement Using the K-Means Algorithm,” Sink. J. dan Penelit. Tek. Inform., vol. 7, no. 3, pp. 891–899, Jul. 2022, doi: 10.33395/SINKRON.V7I3.11458.
[23] N. L. R. Amalia, A. A. Supianto, N. Y. Setiawan, V. Zilvan, A. R. Yuliani, and A. Ramdan, “Student Academic Mark Clustering Analysis and Usability Scoring on Dashboard Development Using K-Means Algorithm and System Usability Scale,” J. Ilmu Komput. dan Inf., vol. 14, no. 2, pp. 137–143, Jul. 2021, doi: 10.21609/JIKI.V14I2.980.
[24] H. Effendi, A. Syahrial, S. Prayoga, and W. D. Hidayat, “Penerapan Metode K-Means Clustering Untuk Pengelompokan Lahan Sawit Produktif Pada PT Kasih Agro Mandiri,” Teknomatika, vol. 11, no. 02, pp. 117–126, Oct. 2021.
[25] N. Nurmila, A. Sugiharto, and E. A. Sarwoko, “Algoritma Back Propagation Neural Network Untuk Pengenalan Pola Karakter Huruf Jawa,” J. Masy. Inform., vol. 1, no. 1, pp. 1–10, 2010, doi: 10.14710/jmasif.1.1.
[26] B. Endaryati and R. Kurniawan, “Komparasi Metode Peramalan Automatic Clustering Technique and Fuzzy Logical Relationships Dengan Single Exponential Smoothing,” Media Stat., vol. 8, no. 2, pp. 93–101, 2015, doi: 10.14710/medstat.8.2.93-101.
[27] F. A. Hizham, Y. Nurdiansyah, and D. M. Firmansyah, “Implementasi metode Backpropagation Neural Network (BNN) dalam sistem klasifikasi ketepatan waktu kelulusan mahasiswa,” Berk. Sainstek, vol. 6, no. 2, pp. 97–105, 2018.
[28] M. Nor Hayati and D. Sri Wahyuningsih, “Peramalan Menggunakan Metode Fuzzy Time Series Cheng Forecasting Using Fuzzy Time Series Cheng Method,” J. EKSPONENSIAL, vol. 8, no. 1, pp. 51–56, 2017.
DOI: https://doi.org/10.22146/ijccs.83195
Article Metrics
Abstract views : 1479 | views : 1240Refbacks
- There are currently no refbacks.
Copyright (c) 2023 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1