Unsupervised Text Style Transfer for Authorship Obfuscation in Bahasa Indonesia
Yunita Sari(1*), Fadhlan Pasyah Al Faridzi(2)
(1) Department of Computer Science and Electronics, FMIPA UGM, Yogyakarta
(2) Bachelor Program of Computer Science, FMIPA UGM, Yogyakarta
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Swinson, T. and Reyna, C. (2013). Authorship Attribution Using Stopword Graphs. pages 1-9. [2] Shrestha, P., Sierra, S., Gonzalez, F., Montes, M., Rosso, P., and Solorio, T. (2017). Convolutional neural networks for authorship attribution of short texts. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 669-674, Valencia, Spain. Association for Computational Linguistics. [3] Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi, F., and Greenstadt, R. (2015). De-anonymizing programmers via code stylometry. In Proceedings of the 24th USENIX Conference on Security Symposium, SEC’15, pages 255{270, Berkeley, CA, USA. USENIX Association. [4] Stamatatos, E. (2013). On the Robustness of Authorship Attribution Based on Character n-gram Features. Journal of Law and Policy, 21(2):421-439. [5] Schwartz, R., Tsur, O., Rappoport, A., and Koppel, M. (2013). Authorship Attribution of Micro-Messages. In 2013 Conference on Empirical Methods in Natural Language Processing, number October, pages 1880-1891, Seattle, USA. [6] Burrows, J. (2002). ‘Delta’: A measure of stylistic difference and a guide to likely authorship. Literary and Linguistic Computing, 17(3):267-287. [7] Georgi Karadzhov, Tsvetomila Mihaylova, Yasen Kiprov, Georgi Georgiev, Ivan Koychev, and Preslav Nakov. 2017. The case for being average: A mediocrity approach to style masking and author obfuscation. In International Conference of the CrossLanguage Evaluation Forum for European Languages, pages 173–185. Springer. [8] Mansoorizadeh, M., Rahgooy, T., Aminiyan, M. dan Eskandari, M., 2016, Author Obfuscation Using WordNet and Language Models, CEUR Workshop Proceedings, Évora. [9] Paolo Rosso, Francisco Rangel, Martin Potthast, Efstathios Stamatatos, Michael Tschuggnall, and Benno Stein. Overview of PAN 2016–New Challenges for Authorship Analysis: Cross-genre Profiling, Clustering, Diarization, and Obfuscation. In Norbert Fuhr et al., editors, Experimental IR Meets Multilinguality, Multimodality, and Interaction. 7th International Conference of the CLEF Initiative (CLEF 2016), volume 9822 of Lecture Notes in Computer Science, pages 518-538, September 2016. Springer [10] Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and Rada Mihalcea. 2022. Deep Learning for Text Style Transfer: A Survey. Computational Linguistics, 48(1):155–205. [11] Wibowo, Haryo & Prawiro, Tatag & Prasojo, Radityo & Mahendra, Rahmad. (2020). Semi-Supervised Low-Resource Style Transfer of Indonesian Informal to Formal Language with Iterative Forward-Translation. [12] Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021), Dominican Republic (virtual).
DOI: https://doi.org/10.22146/ijccs.79623
Article Metrics
Abstract views : 1662 | views : 1216Refbacks
- There are currently no refbacks.
Copyright (c) 2023 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View My Stats1