Aspect-Based Sentiment Analysis in Bromo Tengger Semeru National Park Indonesia Based on Google Maps User Reviews

https://doi.org/10.22146/ijccs.77354

Cynthia As Bahri(1*), Lya Hulliyyatus Suadaa(2)

(1) Politeknik Statistika STIS
(2) Politeknik Statistika STIS
(*) Corresponding Author

Abstract


Technology can influence and shape a person's behavior patterns when planning tours, traveling, and after traveling. Visitors' reviews can be used as evaluation material to improve the quality of tourist destinations and become a determining factor for other tourists to visit or revisit the destinations. The process of utilizing these reviews can be done by assessing the aspects of tourist destinations based on reviews from visitors. This study aims to conduct an aspect-based sentiment analysis on one of the tourist destinations in Indonesia, namely Bromo Tengger Semeru National Park, based on reviews of Google Maps users. The aspects consist of attractions, facilities, access, and price. The sentiment classification model used is a machine learning model consisting of SVM, Complement Naïve Bayes, Logistic Regression, and transfer learning from pre-trained BERT, IndoBERT, and mBERT. Based on the experimental results, transfer learning from the IndoBERT model achieved the best performance with accuracy and F1-Score of 91.48% and 71.56%, respectively. In addition, among the machine learning models used, the SVM model gives the best results with an accuracy of 89.16% and an F1-Score of 62.23%.

Keywords


Aspect-Based Sentiment Analysis, Google Maps Review, Machine Learning, Transfer Learning

Full Text:

PDF


References

Badan Pusat Statistik (BPS), “Statistik Wisatawan Nusantara 2020,” BPS RI, Jakarta, 2021.

Kominfo. (2019, April) Pentingnya Teknologi dalam Sektor Pariwisata [Online]. Available: https://aptika.kominfo.go.id/2019/04/pentingnya-teknologi-dalam-sektor-pariwisata/

M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, and S. Manandhar, “SemEval-2014 Task 4: Aspect Based Sentiment Analysis,” in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, pp. 27-35, August 2014.

D. Arianto and I. Budi, “Aspect-based Sentiment Analysis on Indonesia’s Tourism Destinations Based on Google Maps User Code-Mixed Reviews (Study Case: Borobudur and Prambanan Temples),” in Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation, Hanoi, Vietnam: Association for Computational Linguistics, 24-26 October 2020, pp. 359-367.

UNESCO. (2015) Bromo Tengger Semeru-Arjuno Biosphere Reserve, Indonesia [Online]. Available: https://en.unesco.org/biosphere/aspac/bromo-tengger-semeru-arjuno

I. K. Suwena and I. G. N. Widyatmaja, Pengetahuan Dasar Ilmu Pariwisata. Denpasar: Pustaka Larasan, 2017.

V. R. Khansa, and N. Farida, "Pengaruh Harga Dan Citra Destinasi Terhadap Niat Berkunjung Kembali Melalui Kepuasan (Studi pada Wisatawan Domestik Kebun Raya Bogor)," Jurnal Ilmu Administrasi Bisnis, vol. 5, no. 4, pp. 104-114, Jun. 2016.

K. Krippendorff and R. Craggs, “The Reliability of Multi-Valued Coding of Data,” Communication Methods and Measures, vol. 10, no. 4, pp. 181-198, 2016.

C. H. Yutika, Adiwijaya and S. A. Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 5, no. 2, pp. 422-430, April 2021.

I. M. Yulietha, S. A. Faraby and Adiwijaya, “Klasifikasi Sentimen Review Film Menggunakan Algoritma Support Vector Machine Sentiment Classification of Movie Reviews Using Algorithm Support Vector Machine,” e-Proceeding of Enginering, vol. 4, no. 3, pp. 4740-4750, Desember 2017.

B. Trstenjak, S. Mikac, and D. Donko, “KNN with TF-IDF Based Framework for Text Categorization,” 24th DAAAM International Symposium on Intelligent Manufacturing and Automation 2013, pp. 1356-1364, 2014.

V. N. Vapnik, “Statistical learning theory,” Springer, 1995.

W. Zhang and F. Gao, “An Improvement to Naive Bayes for Text Classification,” Procedia Engineering, vol. 15, pp. 2160-2164, 2011.

S. Sperandei, “Understanding logistic regression analysis,” Biochemia Medica, pp. 12-18, 2014.

J. Devlin, M. Chang, L. Kenton, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” 2019.

B. Wilie, K. Vincentio, G. I. Winata, S. Cahayawijaya, X. Li, Z. Y. Lim, S. Soleman, R. Mahendra, P. Fung, S. Bahar, and A. Purwarianti, “IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding,” CoRR, 2020.

A. N. Azhar and M. L. Khodra, "Fine-tuning Pretrained Multilingual BERT Model for Indonesian Aspect-based Sentiment Analysis," 2020 7th International Conference on Advance Informatics: Concepts, Theory, and Applications (ICAICTA), pp. 1-6, 2020.

J. Shao, “Linear model selection by cross-validation,” Journal of the American Statistical Association, vol. 88, no. 422, pp. 486-494, 1993.



DOI: https://doi.org/10.22146/ijccs.77354

Article Metrics

Abstract views : 2309 | views : 2021

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 IJCCS (Indonesian Journal of Computing and Cybernetics Systems)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Copyright of :
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN 1978-1520 (print); ISSN 2460-7258 (online)
is a scientific journal the results of Computing
and Cybernetics Systems
A publication of IndoCEISS.
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Fax: +62274 555133
email:ijccs.mipa@ugm.ac.id | http://jurnal.ugm.ac.id/ijccs



View My Stats1
View My Stats2